Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 124(1): 1-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31399719

RESUMO

By combining well-established population genetic theory with high-throughput sequencing data from natural populations, major strides have recently been made in understanding how, why, and when vertebrate populations evolve crypsis. Here, we focus on background matching, a particular facet of crypsis that involves the ability of an organism to conceal itself through matching its color to the surrounding environment. While interesting in and of itself, the study of this phenotype has also provided fruitful population genetic insights into the interplay of strong positive selection with other evolutionary processes. Specifically, and predicated upon the findings of previous candidate gene association studies, a primary focus of this recent literature involves the realization that the inference of selection from DNA sequence data first requires a robust model of population demography in order to identify genomic regions which do not conform to neutral expectations. Moreover, these demographic estimates provide crucial information about the origin and timing of the onset of selective pressures associated with, for example, the colonization of a novel environment. Furthermore, such inference has revealed crypsis to be a particularly useful phenotype for investigating the interplay of migration and selection-with examples of gene flow constraining rates of adaptation, or alternatively providing the genetic variants that may ultimately sweep through the population. Here, we evaluate the underlying evidence, review the strengths and weaknesses of the many population genetic methodologies used in these studies, and discuss how these insights have aided our general understanding of the evolutionary process.


Assuntos
Evolução Biológica , Genética Populacional , Lebres/genética , Lagartos/genética , Peromyscus/genética , Pigmentação/genética , Adaptação Fisiológica/genética , Animais , Fluxo Gênico , Fenótipo , Seleção Genética
2.
Mol Ecol ; 26(7): 1980-1990, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27988973

RESUMO

Given the strong selective pressures often faced by populations when colonizing a novel habitat, the level of variation present on which selection may act is an important indicator of adaptive potential. While often discussed in an ecological context, this notion is also highly relevant in our clinical understanding of viral infection, in which the novel habitat is a new host. Thus, quantifying the factors determining levels of variation is of considerable importance for the design of improved treatment strategies. Here, we focus on such a quantification of human cytomegalovirus (HCMV) - a virus which can be transmitted across the placenta, resulting in foetal infection that can potentially cause severe disease in multiple organs. Recent studies using genomewide sequencing data have demonstrated that viral populations in some congenitally infected infants diverge rapidly over time and between tissue compartments within individuals, while in other infants, the populations remain highly stable. Here, we investigate the underlying causes of these extreme differences in observed intrahost levels of variation by estimating the underlying demographic histories of infection. Importantly, reinfection (i.e. population admixture) appears to be an important, and previously unappreciated, player. We highlight illustrative examples likely to represent a single-population transmission from a mother during pregnancy and multiple-population transmissions during pregnancy and after birth.


Assuntos
Infecções por Citomegalovirus/congênito , Citomegalovirus/genética , Evolução Molecular , Variação Genética , Genética Populacional , Infecções por Citomegalovirus/virologia , DNA Viral/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Modelos Genéticos , Gravidez , Análise de Sequência de DNA
3.
Virus Evol ; 2(1): vew014, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28694997

RESUMO

Antiviral drug resistance is a matter of great clinical importance that, historically, has been investigated mostly from a virological perspective. Although the proximate mechanisms of resistance can be readily uncovered using these methods, larger evolutionary trends often remain elusive. Recent interest by population geneticists in studies of antiviral resistance has spurred new metrics for evaluating mutation and recombination rates, demographic histories of transmission and compartmentalization, and selective forces incurred during viral adaptation to antiviral drug treatment. We present up-to-date summaries on antiviral resistance for a range of drugs and viral types, and review recent advances for studying their evolutionary histories. We conclude that information imparted by demographic and selective histories, as revealed through population genomic inference, is integral to assessing the evolution of antiviral resistance as it pertains to human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA