Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915589

RESUMO

Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNA Ser variants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNA Ser variant that misincorporates serine at valine codons (V➔S) and the other that misincorporates serine at threonine codons (TàS). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V➔S variant extended embryonic, larval, and pupal development whereas the T➔S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Mistranslating females also experienced extended lifespan whereas mistranslating male lifespan was unaffected. In addition, mistranslating flies from both sexes showed improved locomotion as they aged, suggesting delayed neurodegeneration. Therefore, although mistranslation causes detrimental effects, we demonstrate that mistranslation also has positive effects on complex traits such as lifespan and locomotion. This has important implications for human health given the prevalence of tRNA variants in humans. PLAIN LANGUAGE SUMMARY: Mutant tRNA genes can cause mistranslation, the misincorporation of amino acids into proteins, and are associated with several human diseases. This study investigated the role of two tRNA variants that cause threonine-to-serine (T➔S) or valine-to-serine (V➔S) substitution. Both variants caused developmental delays and lethality in both sexes and increase prevalence of deformities in females. Surprisingly, female T➔S and V➔S flies experienced increased lifespan and mistranslating males and females showed improved locomotion. These results suggest that mistranslation has both positive and negative effects that depend on the tRNA variant and sex of the fly.

2.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766246

RESUMO

Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.

3.
G3 (Bethesda) ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35143655

RESUMO

Transfer RNAs (tRNAs) are the adaptor molecules required for reading the genetic code and producing proteins. Transfer RNA variants can lead to genome-wide mistranslation, the misincorporation of amino acids not specified by the standard genetic code into nascent proteins. While genome sequencing has identified putative mistranslating transfer RNA variants in human populations, little is known regarding how mistranslation affects multicellular organisms. Here, we create a multicellular model of mistranslation by integrating a serine transfer RNA variant that mistranslates serine for proline (tRNAUGG,G26ASer) into the Drosophila melanogaster genome. We confirm mistranslation via mass spectrometry and find that tRNAUGG,G26ASer misincorporates serine for proline at a frequency of ∼0.6% per codon. tRNAUGG,G26ASer extends development time and decreases the number of flies that reach adulthood. While both sexes of adult flies containing tRNAUGG,G26ASer present with morphological deformities and poor climbing performance, these effects are more pronounced in female flies and the impact on climbing performance is exacerbated by age. This model will enable studies into the synergistic effects of mistranslating transfer RNA variants and disease-causing alleles.


Assuntos
Drosophila melanogaster , Biossíntese de Proteínas , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Prolina/genética , Prolina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Serina/metabolismo
4.
ACS Synth Biol ; 10(11): 3177-3189, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34726901

RESUMO

Transfer RNA (tRNA) variants that alter the genetic code increase protein diversity and have many applications in synthetic biology. Since the tRNA variants can cause a loss of proteostasis, regulating their expression is necessary to achieve high levels of novel protein. Mechanisms to positively regulate transcription with exogenous activator proteins like those often used to regulate RNA polymerase II (RNAP II)-transcribed genes are not applicable to tRNAs as their expression by RNA polymerase III requires elements internal to the tRNA. Here, we show that tRNA expression is repressed by overlapping transcription from an adjacent RNAP II promoter. Regulating the expression of the RNAP II promoter allows inverse regulation of the tRNA. Placing either Gal4- or TetR-VP16-activated promoters downstream of a mistranslating tRNASer variant that misincorporates serine at proline codons in Saccharomyces cerevisiae allows mistranslation at a level not otherwise possible because of the toxicity of the unregulated tRNA. Using this inducible tRNA system, we explore the proteotoxic effects of mistranslation on yeast cells. High levels of mistranslation cause cells to arrest in the G1 phase. These cells are impermeable to propidium iodide, yet growth is not restored upon repressing tRNA expression. High levels of mistranslation increase cell size and alter cell morphology. This regulatable tRNA expression system can be applied to study how native tRNAs and tRNA variants affect the proteome and other biological processes. Variations of this inducible tRNA system should be applicable to other eukaryotic cell types.


Assuntos
Biossíntese de Proteínas/genética , RNA Polimerase II/genética , RNA de Transferência/genética , Transcrição Gênica/genética , Códon/genética , Células Eucarióticas/fisiologia , Fase G1/genética , Prolina/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase III/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA