Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
bioRxiv ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39314438

RESUMO

Basal synaptic strength can vary greatly between synapses formed by an individual neuron because of diverse probabilities of action potential (AP) evoked transmitter release ( Pr ). Optical quantal analysis on large numbers of identified Drosophila larval glutamatergic synapses shows that short-term plasticity (STP) also varies greatly between synapses made by an individual type I motor neuron (MN) onto a single body wall muscle. Synapses with high and low P r and different forms and level of STP have a random spatial distribution in the MN nerve terminal, and ones with very different properties can be located within 200 nm of one other. While synapses start off with widely diverse basal P r at low MN AP firing frequency and change P r differentially when MN firing frequency increases, the overall distribution of P r remains remarkably constant due to a balance between the numbers of synapses that facilitate and depress as well as their degree of change and basal synaptic weights. This constancy in transmitter release can ensure robustness across changing behavioral conditions.

2.
bioRxiv ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39257793

RESUMO

Weakening of synaptic transmission at the Drosophila larval neuromuscular junction triggers two forms of homeostatic compensation, one that increases the probability of glutamate release per action potential (Pr) and another that increases motoneuron (MN) activity. We investigated the molecular changes in MNs that underlie the increase in MN activity. RNA-seq analysis on MNs whose glutamate release is weakened by knockdown of components of the MN transmitter release machinery reveals a reduction in expression of a group of genes that encode potassium channels and their positive modulators. These results identify a mechanism of compensation for weakened synaptic transmission by MNs, which engages a transcriptional program in those cells to increase firing and, thereby, ensure sufficient locomotory drive.

3.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253468

RESUMO

Homeostatic regulation of excitability and synaptic transmission ensures stable neural circuit output under changing conditions. We find that pre- or postsynaptic weakening of motor neuron (MN) to muscle glutamatergic transmission in Drosophila larva has little impact on locomotion, suggesting non-synaptic compensatory mechanisms. In vivo imaging of MN to muscle synaptic transmission and MN activity both show that synaptic weakening increases activity in tonic type Ib MNs, but not in the phasic type Is MN that innervate the same muscles. Additionally, an inhibitory class of pre-MNs that innervates type Ib-but not Is-MNs decreases activity. Our experiments suggest that weakening of MN evoked synaptic release onto the muscle is compensated for by an increase in MN firing due to a combined cell-autonomous increase in excitability and decreased inhibitory central drive. Selectivity for type Ib MNs may serve to restore tonic drive while absence of firing adjustment in the convergent Is MN can maintain the contraction wave dynamics needed for locomotion.

4.
Cell Rep ; 43(8): 114634, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39154344

RESUMO

N-methyl-D-aspartate receptors are ionotropic glutamate receptors that mediate synaptic transmission and plasticity. Variable GluN2 subunits in diheterotetrameric receptors with identical GluN1 subunits set very different functional properties. To understand this diversity, we use single-molecule fluorescence resonance energy transfer (smFRET) to measure the conformations of the ligand binding domain and modulatory amino-terminal domain of the common GluN1 subunit in receptors with different GluN2 subunits. Our results demonstrate a strong influence of the GluN2 subunits on GluN1 rearrangements, both in non-agonized and partially agonized activation intermediates, which have been elusive to structural analysis, and in the fully liganded state. Chimeric analysis reveals structural determinants that contribute to these subtype differences. Our study provides a framework for understanding the conformational landscape that supports highly divergent levels of activity, desensitization, and agonist potency in receptors with different GluN2s and could open avenues for the development of subtype-specific modulators.


Assuntos
Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Humanos , Transferência Ressonante de Energia de Fluorescência , Animais , Conformação Proteica , Células HEK293 , Ativação do Canal Iônico , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Domínios Proteicos
5.
Angew Chem Int Ed Engl ; : e202411181, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189798

RESUMO

AMPA receptors (AMPARs) are the main drivers of excitatory glutamatergic transmission in the brain, central to synaptic plasticity, and are key drug targets. However, AMPARs are expressed in virtually every neuron in the central nervous system and are activated with complex temporal dynamics, making it difficult to determine their functional roles with sufficient precision. Here we describe a cell specific, light-controllable competitive antagonist for the AMPA receptor called MP-GluAblock that combines the temporal precision of a photo-switchable ligand with the spatial and cellular specificity of a genetically-encoded membrane-anchor protein. This tool could pave the way for controlling endogenous AMPARs in neural circuits with cellular, spatial, and temporal specificity.

6.
Cell Chem Biol ; 31(7): 1305-1323.e9, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029456

RESUMO

K2P potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K2P function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (covalent activation of TREK family K+ channels to clamp membrane potential) that leverages the discovery of a K2P modulator pocket site that reacts with electrophile-bearing derivatives of a TREK subfamily small-molecule activator, ML335, to activate the channel irreversibly. We show that CATKLAMP can be used to probe fundamental aspects of K2P function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a means to alter K2P channel activity that should facilitate molecular and systems level studies of K2P function and enable the search for new K2P modulators.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Animais , Células HEK293 , Camundongos , Potenciais da Membrana/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Ratos
7.
Nat Commun ; 15(1): 6409, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080263

RESUMO

Voltage-sensing phosphatases (VSPs) dephosphorylate phosphoinositide (PIP) signaling lipids in response to membrane depolarization. VSPs possess an S4-containing voltage sensor domain (VSD), resembling that of voltage-gated cation channels, and a lipid phosphatase domain (PD). The mechanism by which voltage turns on enzyme activity is unclear. Structural analysis and modeling suggest several sites of VSD-PD interaction that could couple voltage sensing to catalysis. Voltage clamp fluorometry reveals voltage-driven rearrangements in three sites implicated earlier in enzyme activation-the VSD-PD linker, gating loop and R loop-as well as the N-terminal domain, which has not yet been explored. N-terminus mutations perturb both rearrangements in the other segments and enzyme activity. Our results provide a model for a dynamic assembly by which S4 controls the catalytic site.


Assuntos
Domínio Catalítico , Monoéster Fosfórico Hidrolases , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/química , Animais , Domínios Proteicos , Modelos Moleculares , Mutação , Humanos , Técnicas de Patch-Clamp
9.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38586060

RESUMO

G protein coupled receptors (GPCRs) exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. The ß2-adrenergic receptor is an example of GPCR with high selectivity for Gαs, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gαi family of G proteins inhibiting adenylyl cyclase. By developing a new Gαi-biased agonist (LM189), we provide structural and biophysical evidence supporting that distinct conformations at ICL2 and TM6 are required for coupling of the different G protein subtypes Gαs and Gαi. These results deepen our understanding of G protein specificity and bias and can accelerate the design of ligands that select for preferred signaling pathways.

10.
Nature ; 629(8013): 951-956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632403

RESUMO

Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain that is linked via a cysteine-rich domain to their 7-transmembrane domain1. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the extracellular ligand-binding domain to the G protein-coupling 7-transmembrane domain2. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging, we reveal distinct receptor conformations upon allosteric modulator and G protein binding.


Assuntos
Ligantes , Domínios Proteicos , Receptor de Glutamato Metabotrópico 5 , Humanos , Regulação Alostérica/efeitos dos fármacos , Fluorescência , Modelos Moleculares , Ligação Proteica , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/metabolismo , Imagem Individual de Molécula , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo
11.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464305

RESUMO

The G protein-coupled metabotropic glutamate receptors form homodimers and heterodimers with highly diverse responses to glutamate and varying physiological function. The molecular basis for this diversity remains poorly delineated. We employ molecular dynamics, single-molecule spectroscopy, and hydrogen-deuterium exchange to dissect the pathway of activation triggered by glutamate. We find that activation entails multiple loosely coupled steps and identify a novel pre-active intermediate whose transition to the active state forms dimer interactions that set signaling efficacy. Such subunit interactions generate functional diversity that differs across homodimers and heterodimers. The agonist-bound receptor is remarkably dynamic, with low occupancy of G protein-coupling conformations, providing considerable headroom for modulation of the landscape by allosteric ligands. Sites of sequence diversity within the dimerization interface and diverse coupling between activation rearrangements may contribute to precise decoding of glutamate signals and transients over broad spatial and temporal scales.

12.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370786

RESUMO

N-methyl-D-aspartate receptors are ionotropic glutamate receptors that are integral to synaptic transmission and plasticity. Variable GluN2 subunits in diheterotetrameric receptors with identical GluN1 subunits set very different functional properties, which support their individual physiological roles in the nervous system. To understand the conformational basis of this diversity, we assessed the conformation of the common GluN1 subunit in receptors with different GluN2 subunits using single-molecule fluorescence resonance energy transfer (smFRET). We established smFRET sensors in the ligand binding domain and modulatory amino-terminal domain to study an apo-like state and partially liganded activation intermediates, which have been elusive to structural analysis. Our results demonstrate a strong, subtype-specific influence of apo and glutamate-bound GluN2 subunits on GluN1 rearrangements, suggesting a conformational basis for the highly divergent levels of receptor activity, desensitization and agonist potency. Chimeric analysis reveals structural determinants that contribute to the subtype differences. Our study provides a framework for understanding GluN2-dependent functional properties and could open new avenues for subtype-specific modulation.

13.
Nat Commun ; 14(1): 8288, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092773

RESUMO

Metabotropic glutamate receptors (mGluRs) are dimeric class C G-protein-coupled receptors that operate in glia and neurons. Glutamate affinity and efficacy vary greatly between the eight mGluRs. The molecular basis of this diversity is not understood. We used single-molecule fluorescence energy transfer to monitor the structural rearrangements of activation in the mGluR ligand binding domain (LBD). In saturating glutamate, group II homodimers fully occupy the activated LBD conformation (full efficacy) but homodimers of group III mGluRs do not. Strikingly, the reduced efficacy of Group III homodimers does not arise from differences in the glutamate binding pocket but, instead, from interactions within the extracellular dimerization interface that impede active state occupancy. By contrast, the functionally boosted mGluR II/III heterodimers lack these interface 'brakes' to activation and heterodimer asymmetry in the flexibility of a disulfide loop connecting LBDs greatly favors occupancy of the activated conformation. Our results suggest that dimerization interface interactions generate substantial functional diversity by differentially stabilizing the activated conformation. This diversity may optimize mGluR responsiveness for the distinct spatio-temporal profiles of synaptic versus extrasynaptic glutamate.


Assuntos
Receptores de Glutamato Metabotrópico , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dimerização , Ácido Glutâmico/metabolismo , Transferência Ressonante de Energia de Fluorescência
14.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905049

RESUMO

K2P potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K2P function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (Covalent Activation of TREK family K+ channels to cLAmp Membrane Potential) that leverages the discovery of a site in the K2P modulator pocket that reacts with electrophile-bearing derivatives of a TREK subfamily small molecule activator, ML335, to activate the channel irreversibly. We show that the CATKLAMP strategy can be used to probe fundamental aspects of K2P function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a new means to alter K2P channel activity that should facilitate studies both molecular and systems level studies of K2P function and enable the search for new K2P modulators.

15.
Proc Natl Acad Sci U S A ; 120(43): e2311131120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844228

RESUMO

Many neurons in the central nervous system produce a single primary cilium that serves as a specialized signaling organelle. Several neuromodulatory G-protein-coupled receptors (GPCRs) localize to primary cilia in neurons, although it is not understood how GPCR signaling from the cilium impacts circuit function and behavior. We find that the vertebrate ancient long opsin A (VALopA), a Gi-coupled GPCR extraretinal opsin, targets to cilia of zebrafish spinal neurons. In the developing 1-d-old zebrafish, brief light activation of VALopA in neurons of the central pattern generator circuit for locomotion leads to sustained inhibition of coiling, the earliest form of locomotion. We find that a related extraretinal opsin, VALopB, is also Gi-coupled, but is not targeted to cilia. Light-induced activation of VALopB also suppresses coiling, but with faster kinetics. We identify the ciliary targeting domains of VALopA. Retargeting of both opsins shows that the locomotory response is prolonged and amplified when signaling occurs in the cilium. We propose that ciliary localization provides a mechanism for enhancing GPCR signaling in central neurons.


Assuntos
Receptores Acoplados a Proteínas G , Peixe-Zebra , Animais , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Opsinas , Opsinas de Bastonetes , Neurônios , Cílios/fisiologia
16.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693614

RESUMO

Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain (ECD) that is linked via a cysteine-rich domain (CRDs) to their 7-transmembrane (TM) domain. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the ECD to the G protein-coupling TM. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging we reveal distinct receptor conformations upon allosteric modulator and G protein binding.

17.
J Am Chem Soc ; 145(34): 18778-18788, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37586061

RESUMO

Dopamine D2-like receptors (D2R, D3R, and D4R) control diverse physiological and behavioral functions and are important targets for the treatment of a variety of neuropsychiatric disorders. Their complex distribution and activation kinetics in the brain make it difficult to target specific receptor populations with sufficient precision. We describe a new toolkit of light-activatable, fast-relaxing, covalently taggable chemical photoswitches that fully activate, partially activate, or block D2-like receptors. This technology combines the spatiotemporal precision of a photoswitchable ligand (P) with cell type and spatial specificity of a genetically encoded membrane anchoring protein (M) to which the P tethers. These tools set the stage for targeting endogenous D2-like receptor signaling with molecular, cellular, and spatiotemporal precision using only one wavelength of light.


Assuntos
Dopamina , Receptores de Dopamina D2 , Dopamina/metabolismo , Receptores de Dopamina D2/metabolismo , Encéfalo/metabolismo
18.
Cell ; 186(7): 1465-1477.e18, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001505

RESUMO

Receptor activity-modifying proteins (RAMPs) modulate the activity of many Family B GPCRs. We show that RAMP2 directly interacts with the glucagon receptor (GCGR), a Family B GPCR responsible for blood sugar homeostasis, and broadly inhibits receptor-induced downstream signaling. HDX-MS experiments demonstrate that RAMP2 enhances local flexibility in select locations in and near the receptor extracellular domain (ECD) and in the 6th transmembrane helix, whereas smFRET experiments show that this ECD disorder results in the inhibition of active and intermediate states of the intracellular surface. We determined the cryo-EM structure of the GCGR-Gs complex at 2.9 Å resolution in the presence of RAMP2. RAMP2 apparently does not interact with GCGR in an ordered manner; however, the receptor ECD is indeed largely disordered along with rearrangements of several intracellular hallmarks of activation. Our studies suggest that RAMP2 acts as a negative allosteric modulator of GCGR by enhancing conformational sampling of the ECD.


Assuntos
Glucagon , Receptores de Glucagon , Membrana Celular/metabolismo , Glucagon/metabolismo , Receptores de Glucagon/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo
19.
Nat Struct Mol Biol ; 30(6): 841-852, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36928458

RESUMO

Leucine-rich repeat-containing protein 8 (LRRC8) family members form volume-regulated anion channels activated by hypoosmotic cell swelling. LRRC8 channels are ubiquitously expressed in vertebrate cells as heteromeric assemblies of LRRC8A (SWELL1) and LRRC8B-E subunits. Channels of different subunit composition have distinct properties that explain the functional diversity of LRRC8 currents across cell types. However, the basis for heteromeric LRRC8 channel assembly and function is unknown. Here we leverage a fiducial-tagging strategy to determine single-particle cryo-EM structures of heterohexameric LRRC8A:C channels in multiple conformations. Compared to homomers, LRRC8A:C channels show pronounced differences in architecture due to heterotypic LRR interactions that displace subunits away from the conduction axis and poise the channel for activation. Structures and functional studies further reveal that lipids embedded in the channel pore block ion conduction in the closed state. These results provide insight into determinants for heteromeric LRRC8 channel assembly, activity and gating by lipids.


Assuntos
Lipídeos , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Ânions/metabolismo
20.
Curr Opin Pharmacol ; 65: 102259, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749908

RESUMO

Blinding diseases that are caused by degeneration of rod and cone photoreceptor cells often spare the rest of the retinal circuit, from bipolar cells, which are directly innervated by photoreceptor cells, to the output ganglion cells that project axons to the brain. A strategy for restoring vision is to introduce light sensitivity to the surviving cells of the retina. One approach is optogenetics, in which surviving cells are virally transfected with a gene encoding a signaling protein that becomes sensitive to light by binding to the biologically available chromophore retinal, the same chromophore that is used by the opsin photo-detectors of rods and cones. A second approach uses photopharmacology, in which a synthetic photoswitch associates with a native or engineered ion channel or receptor. We review these approaches and look ahead to the next generation of advances that could reconstitute core aspects of natural vision.


Assuntos
Retina , Células Fotorreceptoras Retinianas Cones , Humanos , Optogenética , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA