Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(3): 033001, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34328758

RESUMO

Isotope shifts of ^{223-226,228}Ra^{19}F were measured for different vibrational levels in the electronic transition A^{2}Π_{1/2}←X^{2}Σ^{+}. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.

2.
Nature ; 581(7809): 396-400, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461650

RESUMO

Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1-4. Radioactive molecules-in which one or more of the atoms possesses a radioactive nucleus-can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7-9 in molecules containing octupole-deformed radium isotopes10,11. However, the study of RaF has been impeded by the lack of stable isotopes of radium. Here we present an experimental approach to studying short-lived radioactive molecules, which allows us to measure molecules with lifetimes of just tens of milliseconds. Energetically low-lying electronic states were measured for different isotopically pure RaF molecules using collinear resonance ionisation at the ISOLDE ion-beam facility at CERN. Our results provide evidence of the existence of a suitable laser-cooling scheme for these molecules and represent a key step towards high-precision studies in these systems. Our findings will enable further studies of short-lived radioactive molecules for fundamental physics research.

3.
J Chem Phys ; 146(2): 024306, 2017 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28088152

RESUMO

Photoelectron circular dichroism refers to the forward/backward asymmetry in the photoelectron angular distribution with respect to the propagation axis of circularly polarized light. It has recently been demonstrated in femtosecond multi-photon photoionization experiments with randomly oriented camphor and fenchone molecules [C. Lux et al., Angew. Chem., Int. Ed. 51, 4755 (2012) and C. S. Lehmann et al., J. Chem. Phys. 139, 234307 (2013)]. A theoretical framework describing this process as (2+1) resonantly enhanced multi-photon ionization is constructed, which consists of two-photon photoselection from randomly oriented molecules and successive one-photon ionization of the photoselected molecules. It combines perturbation theory for the light-matter interaction with ab initio calculations for the two-photon absorption and a single-center expansion of the photoelectron wavefunction in terms of hydrogenic continuum functions. It is verified that the model correctly reproduces the basic symmetry behavior expected under exchange of handedness and light helicity. When applied to fenchone and camphor, semi-quantitative agreement with the experimental data is found, for which a sufficient d wave character of the electronically excited intermediate state is crucial.

4.
J Chem Phys ; 124(22): 224302, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16784269

RESUMO

We report the first results of relativistic correlation calculation of the spectroscopic properties for the ground state of E112H and its cation in which spin-orbit interaction is taken into account non-perturbatively. Studying the properties of E112 (eka-Hg) is required for chemical identification of its long-lived isotope, (283)112. It is shown that appropriate accounting for spin-orbit effects leads to dramatic impact on the properties of E112H whereas they are not so important for E112H(+). The calculated equilibrium distance, R(e) (calc)=1.662 Angstrom, in E112H is notably smaller than R(e) (expt)=(1.738+/-0.003) Angstrom and R(e) (calc)=1.738 Angstrom in HgH, whereas the dissociation energy, D(e) (calc)=0.42 eV, in E112H is close to D(e) (expt)=0.46 eV and D(e) (calc)=0.41 eV in HgH. These data are quite different from R(e) (NH)=1.829 Angstrom and D(e) (NH)=0.06 eV obtained for E112H within the scalar-relativistic Douglas-Kroll approximation. Our results indicate that E112 should not be expected to behave like a noble gas in contrast to the results by other authors.

5.
J Chem Phys ; 125(24): 241102, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17199333

RESUMO

Interactions of eka-Hg (E112) and Hg atoms with small gold clusters were studied in the frame of the relativistic effective core potential model using the density functional theory (DFT) approach incorporating spin-dependent (magnetic) interactions. The choice of the exchange-correlation functional was based on a comparison of the results of DFT and large-scale coupled cluster calculations for E112Au and HgAu at the scalar relativistic level. A close similarity between the E112Aun and HgAun equilibrium structures was observed. The E112 binding energies on Aun are typically smaller than those for Hg by ca. 25%-32% and the equilibrium E112-Au separations are always slightly larger than their Hg-Au counterparts.

6.
Phys Rev Lett ; 95(16): 163004, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16241794

RESUMO

We report the first results of ab initio relativistic correlation calculation of the effective electric field on the electron, E(eff), in the ground state of the HI+ cation. This value is required for interpretation of the suggested experiment on the search for the electron electric dipole moment. The generalized relativistic effective core potential, Fock-space relativistic coupled cluster with single and double cluster amplitudes (RCC-SD), and spin-orbit direct configuration interaction (SODCI) methods are used, followed by nonvariational one-center restoration of the four-component wave function in the iodine core. The RCC-SD value is E(eff) = 0.345 x 10(24) Hz/e cm and SODCI study gives E(eff) = 0.336 x 10(24) Hz/e cm (our final value). The structure of chemical bonding in HI+ is clarified, and a significant deviation of our value from that of Ravaine et al. [Phys. Rev. Lett. 94, 013001 (2005)] is explained.

7.
Phys Rev Lett ; 88(7): 073001, 2002 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-11863891

RESUMO

A method and codes for two-step correlation calculations of heavy-atom molecules have been developed, employing the generalized relativistic effective core potential (GRECP) and relativistic coupled cluster (RCC) methods at the first step, followed by nonvariational one-center restoration of proper four-component spinors in the heavy cores. Electron correlation is included for the first time in an ab initio calculation of the interaction of the permanent P,T-odd proton electric dipole moments with the internal electromagnetic field in a molecule. Inclusion of electron correlation by GRECP/RCC has a major effect on the P,T-odd parameters of 205TlF, decreasing M by 17% and X by 22%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA