Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38798668

RESUMO

We have recently demonstrated that Sox10 -expressing ( Sox10 + ) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. In this study, we used inducible Cre mouse models to map the cell lineages of connective tissue (including stromal and Schwann cells) and vEGs and performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex. In vivo lineage mapping showed that the distribution of traced cells in circumvallate taste buds was closely linked with that in the vEGs, but not in the connective tissue. Sox10 , but not the known stem cells marker Lgr5 , expression was enriched in the cell clusters of main ducts of vEGs that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and excretory ductal cells. Moreover, multiple genes encoding pathogen receptors are enriched in the vEG main ducts. Our data indicate that the main duct of vEGs is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.

2.
Cell Stem Cell ; 31(5): 734-753.e8, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38608707

RESUMO

Autonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system. Human pluripotent stem cell (hPSC)-derived neurons can fill this void as a versatile platform. Here, we developed a differentiation paradigm detailing the derivation of functional human parasymNs from Schwann cell progenitors. We employ these neurons (1) to assess human autonomic nervous system (ANS) development, (2) to model neuropathy in the genetic disorder familial dysautonomia (FD), (3) to show parasymN dysfunction during SARS-CoV-2 infection, (4) to model the autoimmune disease Sjögren's syndrome (SS), and (5) to show that parasymNs innervate white adipocytes (WATs) during development and promote WAT maturation. Our model system could become instrumental for future disease modeling and drug discovery studies, as well as for human developmental studies.


Assuntos
Diferenciação Celular , Disautonomia Familiar , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Disautonomia Familiar/patologia , Neurônios , Síndrome de Sjogren/patologia , COVID-19/virologia , COVID-19/patologia , Animais , Sistema Nervoso Parassimpático , Células de Schwann , Camundongos , SARS-CoV-2/fisiologia
3.
Development ; 150(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680190

RESUMO

Taste papillae are specialized organs, each of which comprises an epithelial wall hosting taste buds and a core of mesenchymal tissue. In the present study, we report that during early taste papilla development in mouse embryos, bone morphogenetic protein (BMP) signaling mediated by type 1 receptor ALK3 in the tongue mesenchyme is required for epithelial Wnt/ß-catenin activity and taste papilla differentiation. Mesenchyme-specific knockout (cKO) of Alk3 using Wnt1-Cre and Sox10-Cre resulted in an absence of taste papillae at E12.0. Biochemical and cell differentiation analyses demonstrated that mesenchymal ALK3-BMP signaling governed the production of previously unappreciated secretory proteins, i.e. it suppressed those that inhibit and facilitated those that promote taste papilla differentiation. Bulk RNA-sequencing analysis revealed many more differentially expressed genes (DEGs) in the tongue epithelium than in the mesenchyme in Alk3 cKO versus control. Moreover, we detected downregulated epithelial Wnt/ß-catenin signaling and found that taste papilla development in the Alk3 cKO was rescued by the GSK3ß inhibitor LiCl, but not by Wnt3a. Our findings demonstrate for the first time the requirement of tongue mesenchyme in taste papilla cell differentiation.


Assuntos
Papilas Gustativas , Animais , Camundongos , beta Catenina , Paladar , Língua , Diferenciação Celular/genética , Mesoderma
4.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066397

RESUMO

Taste papillae are specialized organs each of which is comprised of an epithelial wall hosting taste buds and a core of mesenchymal tissue. In the present study, we report that during the early stages of embryonic development, bone morphogenetic protein (BMP) signaling mediated by type 1 receptor ALK3 in the tongue mesenchyme is required for the epithelial Wnt/ß-catenin activity and taste papilla cell differentiation. Mesenchyme-specific knockout ( cKO ) of Alk3 using Wnt1-Cre and Sox10-Cre resulted in an absence of taste papillae at E12.0. Biochemical and cell differentiation analyses demonstrated that mesenchymal ALK3-BMP signaling governs the production of previously unappreciated secretory proteins, i.e., suppresses those that inhibiting and facilitates those promoting taste cell differentiation. Bulk RNA-Sequencing analysis revealed many more differentially expressed genes (DEGs) in the tongue epithelium than in the mesenchyme in Alk3 cKO vs control. Moreover, we detected a down-regulated epithelial Wnt/ß-catenin signaling, and taste papilla development in the Alk3 cKO was rescued by GSK3ß inhibitor LiCl, but not Wnt3a. Our findings demonstrate for the first time the requirement of tongue mesenchyme in taste papilla cell differentiation. Summary statement: This is the first set of data to implicate the requirement of tongue mesenchyme in taste papilla cell differentiation.

5.
Cell Prolif ; 54(12): e13144, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34697858

RESUMO

OBJECTIVES: The mammalian tongue develops from the branchial arches (1-4) and comprises highly organized tissues compartmentalized by mesenchyme/connective tissue that is largely derived from neural crest (NC). This study aimed to understand the roles of tumour suppressor Neurofibromin 2 (Nf2) in NC-derived tongue mesenchyme in regulating Hippo signalling and cell proliferation for the proper development of tongue shape and size. MATERIALS AND METHODS: Conditional knockout (cKO) of Nf2 in NC cell lineage was generated using Wnt1-Cre (Wnt1-Cre/Nf2cKO ). Nf2 expression, Hippo signalling activities, cell proliferation and tongue shape and size were thoroughly analysed in different tongue regions and tissue types of Wnt1-Cre/Nf2cKO and Cre- /Nf2fx/fx littermates at various stages (E10.5-E18.5). RESULTS: In contrast to many other organs in which the Nf2/Hippo pathway activity restrains growth and cell proliferation and as a result, loss of Nf2 decreases Hippo pathway activity and promotes an enlarged organ development, here we report our observations of distinct, tongue region- and stage-specific alterations of Hippo signalling activity and cell proliferation in Nf2cKO in NC-derived tongue mesenchyme. Compared to Cre- /Nf2fx / fx littermates, Wnt1-Cre/Nf2cKO depicted a non-proportionally enlarged tongue (macroglossia) at E12.5-E13.5 and microglossia at later stages (E15.5-E18.5). Specifically, at E12.5 Nf2cKO mutants had a decreased level of Hippo signalling transcription factor Yes-associated protein (Yap), Yap target genes and cell proliferation anteriorly, while having an increased Yap, Yap target genes and cell proliferation posteriorly, which lead to a tip-pointed and posteriorly widened tongue. At E15.5, loss of Nf2 in the NC lineage resulted in distinct changes in cell proliferation in different regions, that is, high in epithelium and mesenchyme subjacent to the epithelium, and lower in deeper layers of the mesenchyme. At E18.5, cell proliferation was reduced throughout the Nf2cKO tongue.


Assuntos
Proliferação de Células , Deleção de Genes , Via de Sinalização Hippo , Mesoderma/embriologia , Fator 2 Relacionado a NF-E2/deficiência , Crista Neural/embriologia , Língua/embriologia , Animais , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/metabolismo , Tamanho do Órgão
6.
J Vis Exp ; (167)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33554964

RESUMO

Cell dissociation has been an essential procedure for studies at the individual-cell level and/or at a cell-population level (e.g., single cell RNA sequencing and primary cell culture). Yielding viable, healthy cells in large quantities is critical, and the optimal conditions to do so are tissue dependent. Cell populations in the tongue epithelium and underlying mesenchyme/connective tissue are heterogeneous and tissue structures vary in different regions and at different developmental stages. We have tested protocols for isolating cells from the mouse tongue epithelium and mesenchyme/connective tissue in the early developmental [embryonic day 12.5 (E12.5)] and young adult (8-week) stages. A clean separation between the epithelium and underlying mesenchyme/connective tissue was easy to accomplish. However, to further process and isolate cells, yielding viable healthy cells in large quantities, and careful selection of enzymatic digestion buffer, incubation time, and centrifugation speed and time are critical. Incubation of separated epithelium or underlying mesenchyme/connective tissue in 0.25% Trypsin-EDTA for 30 min at 37 °C, followed by centrifugation at 200 x g for 8 min resulted in a high yield of cells at a high viability rate (>90%) regardless of the mouse stages and tongue regions. Moreover, we found that both dissociated epithelial and mesenchymal/connective tissue cells from embryonic and adult tongues could survive in the cell culture-based medium for at least 3 h without a significant decrease of cell viability. The protocols will be useful for studies that require the preparation of isolated cells from mouse tongues at early developmental (E12.5) and young adult (8-week) stages requiring cell dissociation from different tissue compartments.


Assuntos
Tecido Conjuntivo/embriologia , Embrião de Mamíferos/citologia , Células Epiteliais/citologia , Epitélio/embriologia , Mesoderma/citologia , Língua/embriologia , Animais , Contagem de Células , Sobrevivência Celular , Processamento de Imagem Assistida por Computador , Camundongos Endogâmicos C57BL
7.
Stem Cells Dev ; 29(10): 638-647, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32098606

RESUMO

Taste bud cells are specialized epithelial cells that undergo continuous turnover, and thus require active progenitors for their renewal and an intact taste function. Our previous studies suggested that a population of taste bud cells originates from outside of the surrounding tongue epithelium-previously regarded sole source of taste bud progenitors. In this study, we demonstrated that SOX10 (SRY-related HMG-box gene 10)-expressing cells, known to be in the migrating neural crest, were also distributed in taste bud-surrounding tissue compartments under the tongue epithelium, that is, the connective tissue core of taste papillae and von Ebner's glands. By lineage tracing of SOX10-expressing cells using SOX10-Cre, a Cre model driven by the endogenous SOX10 promoter, crossing with a Cre reporter line R26-tdTomato (tdT), we found SOX10-Cre-labeled tdT+ cells within taste buds in all three types of taste papillae (fungiform, circumvallate, and foliate) as well as in the soft palate in postnatal mice. The tdT+ taste bud cells were progressively more abundant along the developmental stages, from virtually zero at birth to over 35% in adults. Most of tdT+ taste bud cells had a low intensity of immunosignals of Keratin 8 (a widely used taste bud cell marker). In circumvallate taste buds, tdT signals were co-localized principally with a type III taste bud cell marker, less so with type I and II cell makers. Together, our data demonstrate a novel progenitor source for taste buds of postnatal mice-SOX10-Cre-labeled cells in the connective tissue core and/or von Ebner's glands.


Assuntos
Epitélio/metabolismo , Integrases/metabolismo , Queratina-8/metabolismo , Fatores de Transcrição SOXE/metabolismo , Animais , Células Epiteliais/metabolismo , Camundongos , Crista Neural/metabolismo , Língua/metabolismo
8.
Genesis ; 58(1): e23337, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571391

RESUMO

Proper development of taste organs including the tongue and taste papillae requires interactions with the underlying mesenchyme through multiple molecular signaling pathways. The effects of bone morphogenetic proteins (BMPs) and antagonists are profound, however, the tissue-specific roles of distinct receptors are largely unknown. Here, we report that constitutive activation (ca) of ALK2-BMP signaling in the tongue mesenchyme (marked by Wnt1-Cre) caused microglossia-a dramatically smaller and misshapen tongue with a progressively severe reduction in size along the anteroposterior axis and absence of a pharyngeal region. At E10.5, the tongue primordia (branchial arches 1-4) formed in Wnt1-Cre/caAlk2 mutants while each branchial arch responded to elevated BMP signaling distinctly in gene expression of BMP targets (Id1, Snai1, Snai2, and Runx2), proliferation (Cyclin-D1) and apoptosis (p53). Moreover, elevated ALK2-BMP signaling in the mesenchyme resulted in apparent defects of lingual epithelium, muscles, and nerves. In Wnt1-Cre/caAlk2 mutants, a circumvallate papilla was missing and further development of formed fungiform papillae was arrested in late embryos. Our data collectively demonstrate that ALK2-BMP signaling in the mesenchyme plays essential roles in orchestrating various tissues for proper development of the tongue and its appendages in a region-specific manner.


Assuntos
Receptores de Ativinas Tipo I/genética , Proteínas Morfogenéticas Ósseas/genética , Língua/embriologia , Receptores de Ativinas Tipo I/metabolismo , Animais , Apoptose/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células/genética , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Transdução de Sinais/genética , Papilas Gustativas/embriologia , Doenças da Língua/genética , Doenças da Língua/metabolismo , Transativadores/genética , Proteína Wnt1/genética
9.
Biochem Biophys Res Commun ; 515(1): 149-155, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31133375

RESUMO

Mammalian taste buds emerge perinatally and most become mature 3-4 weeks after birth. Mature taste bud cells in rodents are known to be renewed by the surrounding K14+ basal epithelial cells and potentially other progenitor source(s), but the dynamics between initially developed taste buds and surrounding tissue compartments are unclear. Using the K14-Cre and Dermo1-Cre mouse lines to trace epithelial and mesenchymal cell lineages, we found that early taste buds in E18.5 and newborn mouse tongues are not derived from either lineage. At E11.5 when the tongue primordia (i.e., lingual swellings) emerge, the relatively homogeneous sonic hedgehog-expressing (Shh+) epithelial cells express Keratin (K) 8, a marker that is widely used to label taste buds. Mapping lineage of E11.0 Shh+ epithelium of the tongue rudiment with Shh-CreERT2/RFP mice demonstrated that both the early taste buds and the surrounding lingual epithelium are from the same population of progenitors - Shh+ epithelial cells of the tongue primordium. In combination with previous reports, we propose that Shh+K8+ cells in the homogeneous epithelium of tongue primordium at early embryonic stages are programmed to become taste papilla and taste bud cells. Switching off Shh and K8 expression in the Shh+ epithelial cells of the tongue primordium transforms the cells to non-gustatory cells surrounding papillae, including K14+ basal epithelial cells which will eventually contribute to the cell renewal of mature taste buds.


Assuntos
Células Epiteliais/metabolismo , Epitélio/metabolismo , Proteínas Hedgehog/metabolismo , Papilas Gustativas/metabolismo , Língua/metabolismo , Animais , Epitélio/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Imuno-Histoquímica , Queratina-14/genética , Queratina-14/metabolismo , Camundongos da Linhagem 129 , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Paladar , Papilas Gustativas/embriologia , Língua/embriologia
10.
Genesis ; 55(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371069

RESUMO

P0-Cre and Wnt1-Cre mouse lines have been widely used in combination with loxP-flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1-Cre has been regarded as the gold standard and there have been concerns about the specificity of P0-Cre because it is not clear about the timing and spatial distribution of the P0-Cre transgene in labeling NC cells at early embryonic stages. We re-visited P0-Cre and Wnt1-Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26-lacZ Cre reporter responded to Cre activity more reliably than CAAG-lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0-Cre and reporter (lacZ and RFP) activity in P0-Cre/R26-lacZ and P0-Cre/R26-RFP embryos was detected in the cranial NC and notochord regions in E8.0-9.5 (4-19 somites) embryos. P0-Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0-Cre and Wnt1-Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1-Cre and in the hindbrain of P0-Cre embryos. The difference between P0-Cre and Wnt1-Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre-driven genetic modifications.


Assuntos
Crista Neural/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Linhagem da Célula , Integrases/genética , Integrases/metabolismo , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/embriologia , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Prosencéfalo/citologia , Transgenes , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA