Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Plant Physiol ; 291: 154136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38007968

RESUMO

Drought is one of the main environmental stressors that can alter the water status of plants; negatively affect growth, assimilation, and photosynthesis; and eventually reduce crop yield. We explored the dependence of drought tolerance traits on chlorophyll-A content. Local sunflower cultivars (FH-01, FH-628, FH-633, FH-572, and FH-653) were grown in pots and subjected to drought by withholding water for 10, 15, or 20 d. One month after germination, the leaves of the treated and non-treated plants were collected and subjected to biochemical analyses. Under different water stress levels, the levels of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and proline increased, whereas those of chlorophyll-A decreased. Regression analysis clearly found that proline (-0.442), POD (-0.528), SOD (-0.532), and CAT (-0.814) have negative beta coefficient values. Phylogenetic analysis revealed that the LHC gene family is divided into six clades. Subcellular locations indicated that most LHC genes were located in the chloroplast; however, only few genes were present in the peroxisomes and endoplasmic reticulum. Our research found that Arabidopsis thaliana LHC genes were highly homologous to the LHC genes of Helianthus annuus. Furthermore, the LHC genes of both species are located in the chloroplasts; therefore, they play a role in photosynthesis and renewable energy production. This study opens a new horizon for discussing the role of chlorophyll-A in the drought-related traits of sunflowers.


Assuntos
Helianthus , Helianthus/genética , Clorofila A , Secas , Filogenia , Clorofila , Peroxidases/genética , Peroxidase , Prolina/genética , Superóxido Dismutase/genética , Genômica , Estresse Fisiológico/genética
2.
Biosensors (Basel) ; 12(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35200381

RESUMO

Suspension microsphere immunoassays are rapidly gaining attention in multiplex bioassays. Accurate detection of multiple analytes from a single measurement is critical in modern bioanalysis, which always requires complex encoding systems. In this study, a novel bioassay with Raman-coded antibody supports (polymer microbeads with different Raman signatures) and surface-enhanced Raman scattering (SERS)-coded nanotags (organic thiols on a gold nanoparticle surface with different SERS signatures) was developed as a model fluorescent, label-free, bead-based multiplex immunoassay system. The developed homogeneous immunoassays included two surface-functionalized monodisperse Raman-coded microbeads of polystyrene and poly(4-tert-butylstyrene) as the immune solid supports, and two epitope modified nanotags (self-assembled 4-mercaptobenzoic acid or 3-mercaptopropionic acid on gold nanoparticles) as the SERS-coded reporters. Such multiplex Raman/SERS-based microsphere immunoassays could selectively identify specific paratope-epitope interactions from one mixture sample solution under a single laser illumination, and thus hold great promise in future suspension multiplex analysis for diverse biomedical applications.


Assuntos
Ouro , Nanopartículas Metálicas , Imunoensaio , Microesferas , Análise Espectral Raman
3.
An Acad Bras Cienc ; 93(1): e20181384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886698

RESUMO

Organic manures are more preferred and environmentally friendly than chemical fertilizers for minimally contaminating soil, water and environmental resources, but the determination of right source of organic manures continues to remain an unexplored aspect. Considering the important issue, a multi-year field trial was carried out to determine the response of forage soybean to four sources of nutrients such as chemical fertilizers (IF), poultry litter (PL), bovine's farm yard slurry (BFYS) and sewage sludge (SS) and their seven binary combinations (PL+BFYS, PL+SS, PL+IF, BFYS+SS, BFYS+IF, SS+IF and PL+BFYS+SS). Supplementation of organic manures with mineral fertilizers remained superior to their sole application, particularly BFYS + IF was found significantly (p≤0.05) superior for yielding the highest fresh biomass (23.9, 26.4 and 25.7 t ha-1) with improved nutritional quality. The same combination of integrated fertilizer management also recorded higher sustainability as per sustainable forage yield index along with the highest net income and the benefit-cost ratio. PL and SS applied in conjunction with IF performed better than sole or binary application of organic manures. Therefore, BFYS + IF may be recommended for adoption to produce comparable forage yield and nutritional quality of soybean along with reducing dependency on chemical fertilizers.


Assuntos
Glycine max , Esterco , Agricultura , Animais , Bovinos , Fertilizantes , Valor Nutritivo , Solo
4.
Materials (Basel) ; 13(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947781

RESUMO

Flexible electronics have gained eminent importance in recent years due to their high mechanical strength and resistance to environmental conditions, along with their effective energy storage and energy generating abilities. In this work, graphene/ceramic/polymer based flexible dielectric nanocomposites have been prepared and their dielectric properties were characterized. The composite was formulated by combining graphene with rutile and anatase titania, and polyvinylidene fluoride in different weight ratios to achieve optimized dielectric properties and flexibility. After preparation, composites were characterized for their morphologies, structures, functional groups, thermal stability and dielectric characterizations by using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis and impedance spectroscopy. Dielectric results showed that prepared flexible composite exhibited dielectric constant of 70.4 with minor leakage current (tanδ) i.e., 0.39 at 100 Hz. These results were further confirmed by calculating alternating current (AC) conductivity and electric modulus which ensured that prepared material is efficient dielectric material which may be employed in electronic industry for development of next generation flexible energy storage devices.

5.
Sci Rep ; 9(1): 5974, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979913

RESUMO

Supercapacitors (SCs) due to their high energy density, fast charge storage and energy transfer, long charge discharge curves and low costs are very attractive for designing new generation of energy storage devices. In this work we present a simple and scalable synthetic approach to engineer ternary composite as electrode material based on combination of graphene with doped metal oxides (iron oxide) and conductive polymer (polypyrrole) with aims to achieve supercapacitors with very high gravimetric and areal capacitances. In the first step a binary composite with graphene mixed with doped iron oxide (rGO/MeFe2O4) (Me = Mn, Ni) was synthesized using new single step process with NaOH acting as a coprecipitation and GO reducing agent. This rGO/MnFe2O4 composite electrode showed gravimetric capacitance of 147 Fg-1 and areal capacitance of 232 mFcm-2 at scan rate of 5 mVs-1. In the final step a conductive polypyrrole was included to prepare a ternary composite graphene/metal doped iron oxide/polypyrrole (rGO/MnFe2O4/Ppy) electrode. Ternary composite electrode showed significantly improved gravimetric capacitance and areal capacitance of 232 Fg-1 and 395 mFcm-2 respectively indicating synergistic impact of Ppy additives. The method is promising to fabricate advanced electrode materials for high performing supercapacitors combining graphene, doped iron oxide and conductive polymers.

6.
Materials (Basel) ; 11(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154393

RESUMO

To address the limitations of piezoelectric polymers which have a low dielectric constant andto improve their dielectric and ferroelectric efficiency for energy storage applications, we designed and characterized a new hybrid composite that contains polyvinylidene fluoride as a dielectric polymer matrix combined with graphene platelets as a conductive and barium titanite as ceramic ferroelectric fillers. Different graphene/barium titanate/polyvinylidene fluoride nanocomposite films were synthesized by changing the concentration of graphene and barium titanate to explore the impact of each component and their potential synergetic effect on dielectric and ferroelectric properties of the composite. Results showed that with an increase in the barium titanate fraction, dielectric efficiency ofthe nanocomposite was improved. Among all synthesized nanocomposite films, graphene/barium titanate/polyvinylidene fluoride nanocomposite in the weight ratio of 0.15:0.5:1 exhibited thehighest dielectric constant of 199 at 40 Hz, i.e., 15 fold greater than that of neat polyvinylidene fluoride film at the same frequency, and possessed a low loss tangent of 0.6. However, AC conductivity and ferroelectric properties of graphene/barium titanate/polyvinylidene fluoride nanocomposite films were enhanced with an increase in the graphene weight fraction. Graphene/barium titanate/polyvinylidene fluoride nanocomposite films with a weight ratio of 0.2:0.1:1 possessed a high AC conductivity of 1.2 × 10-4 S/m at 40 Hz. While remanent polarization, coercive field, and loop area of the same sample were 0.9 µC/cm², 9.78 kV/cm, and 24.5 µC/cm²·V, respectively. Our results showed that a combination of graphene and ferroelectric ceramic additives are an excellent approach to significantly advance the performance of dielectric and ferroelectric properties of piezoelectric polymers for broad applications including energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA