Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0119767, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25757090

RESUMO

To examine if changes in species composition of a plankton community in the past due to anthropogenic activities can be clarified in lakes without any monitoring data, we analyzed genetically ephippial carapaces of Daphnia with plankton remains stored in the bottom sediments of Lake Hataya Ohunma in Japan. In the lake, abundance of most plankton remains in the sediments was limited and TP flux was at low levels (2-4 mg/m2/y) before 1970. However TP flux increased two-fold during the period from 1980s to 1990 s. In parallel with this increase, abundance of most plankton remains increased although abundance of benthic testate amoebae's remains decreased, indicating that the lake trophic condition had changed from oligo- to mesotrophic for the past 60 years. According to cluster analysis, the stratigraphic sediments were divided into two periods with different features of the phytoplankton composition. Chronological comparison with events in the watershed suggested that eutrophication occurred because of an increase in visitors to the watershed and deposition of atmospheric dust. In this lake more than 50% of resting eggs produced by Daphnia over the past 60 years hatched. However, genetic analysis of the ephippial carapaces (remains) showed that the Daphnia population was originally composed of D. dentifera but that D. galeata, or its hybrid with D. dentifera, invaded and increased the population density when the lake was eutrophied. Subsequently, large D. pulex established populations in the 1980s when largemouth bass were anonymously introduced. These results indicated that the Lake Hataya Ohunma plankton community underwent significant changes despite the fact that there were no notable changes in land cover or land use in the watershed. Since increases in atmospheric deposition and release of fish have occurred in many Japanese lakes, the changes in the plankton community described here may be widespread in these lakes.


Assuntos
Daphnia , Ecossistema , Animais , Cadeia Alimentar , Sedimentos Geológicos , Japão , Lagos , Fitoplâncton , Densidade Demográfica
2.
Environ Microbiol Rep ; 7(3): 435-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25625632

RESUMO

Zoosporic fungal parasites are known to control the extent and development of blooms of numerous phytoplankton species. Despite the obvious importance of ecological interactions between parasitic fungi and their phytoplanktonic hosts, their diversity remains largely unknown due to methodological limitations. Here, a method to genetically analyse fungi directly from single, infected colonies of the phytoplanktonic host was applied to field samples of large diatom species from mesotrophic Lake Biwa and eutrophic Lake Inba, Japan. Although previous research on interaction between lacustrine fungi and large phytoplankton has mainly focused on the role of parasitic Chytridiomycota, our results revealed that fungi attached to large diatoms included not only members of Chytridiomycota, but also members of Aphelida, Cryptomycota and yeast. The fungi belonging to Chytridiomycota and Aphelida form novel, basal lineages. Environmental clone libraries also support the occurrence of these lineages in Japanese lakes. The presented method enables us to better characterize individual fungal specimens on phytoplankton, and thus facilitate and improve the investigation of ecological relationships between fungi and phytoplankton in aquatic ecosystems.


Assuntos
Diatomáceas/microbiologia , Água Doce/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Lagos/microbiologia , Fitoplâncton/microbiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fungos/genética , Genes de RNAr , Japão , Filogenia , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
3.
BMC Evol Biol ; 11: 209, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21756366

RESUMO

BACKGROUND: Ecological specializations such as antipredator defense can reinforce morphological and distributional divergence within hybridizing species. Two hybridizing species of Daphnia (D. galeata and D. dentifera) are distributed in both Japan and North America; however, these populations have a longer history in Japan than in North America due to the differing impact of the last glaciation on these two regions. We tested the hypothesis that this longer coexistence in Japan would lead to extensive genetic admixture in nuclear and mitochondrial DNA whilst the distinct morphological traits and distributional patterns would be maintained. RESULTS: The high level of correspondence among morphological traits, distribution, and mitochondrial and nuclear DNA types for the specimens with D. dentifera mtDNA indicated that the species distinction has been maintained. However, a discordance between mtDNA and nuclear ITS-1 types was observed for most specimens that had D. galeata mtDNA, consistent with the pattern seen between the two species in North America. This observation suggests nuclear introgression from D. dentifera into D. galeata without mitochondrial introgression. CONCLUSIONS: The separation of morphological traits and distribution ranges of the two hybridizing species in Japan, as well as in North America, has been maintained, despite large differences in climatic and geographical histories of these two regions. Variations in environmental factors, such as predation pressure, might affect maintenance of the distribution, although the further studies are needed to confirm this.


Assuntos
Quimera/genética , Daphnia/genética , Ecossistema , Hibridização Genética , Animais , Quimera/classificação , DNA Mitocondrial/genética , Daphnia/classificação , Japão , Dados de Sequência Molecular , América do Norte , Filogenia , Especificidade da Espécie
4.
BMC Evol Biol ; 7: 52, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-17407568

RESUMO

BACKGROUND: Populations may be bound by contemporary gene flow, selective sweeps, and extinction-recolonization processes. Indeed, existing molecular estimates indicate that species with low levels of gene flow are rare. However, strong priority effects and local selective regimes may hinder gene flow (despite dispersal) sending populations on independent evolutionary trajectories. In this scenario (the monopolization hypothesis), population differentiation will increase with time and genealogical evidence should yield ample private haplotypes. Cyclical parthenogens (e.g. rotifers and cladocerans such as Daphnia) have an increased capacity for rapid local adaptation and priority effects because sexual reproduction is followed by multiple generations of clonal selection and massive egg bank formation. We aimed to better understand the history of population differentiation and ongoing gene flow in Daphnia rosea s.l., by comparing population and regional divergences in mature unglaciated areas and younger previously glaciated areas. We also examined the timing and paths of colonization of previously-glaciated areas to assess the dispersal limitations of D. rosea s.l. We used DNA sequence variation (84 populations and >400 individuals) at the mitochondrial ND2 and nuclear HSP90 loci from Holarctic populations for our genetic analyses. RESULTS: The genetic evidence indicated pronounced historical structure. Holarctic mtDNA phylogenies of D. rosea s.l. revealed three geographically restricted and divergent clades: European, Siberian and Japanese/American. The Japanese/American clade showed marked population genetic structure (FST > 0.8) that was weakly associated with geographic distance, and a high proportion of private haplotypes. Populations from older unglaciated habitats (i.e., Japan) showed higher DNA sequence divergences than populations from presumed younger habitats (i.e. non-Beringian North America) with nDNA and with mtDNA. Mismatch analyses of mtDNA and nDNA were consistent with a single rapid post-glacial expansion of D. rosea that covered most of the New World. CONCLUSION: Our evidence agrees with negligible gene flow after founding, and the accumulation of genetic divergence with habitat age. Existing direct evidence and our mismatch analyses indicate that the pronounced population differentiation is unlikely to be due to dispersal limitation. Instead, priority effects and local selection regimes may play a role in limiting gene flow. The results challenge the notion that lacustrine populations of cladocerans are generally unified by contemporary gene flow.


Assuntos
Daphnia/genética , Variação Genética , Animais , Regiões Árticas , DNA Mitocondrial/genética , Ecossistema , Fluxo Gênico , Especiação Genética , Filogenia , Dinâmica Populacional
5.
Mol Ecol ; 16(3): 569-82, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17257114

RESUMO

The effects of Quaternary glacial range partitioning on the diversification of Holarctic biota remain unclear. Glacial refugial lineages may form vicariant species, hybrid products, or merge after secondary contact. Here, we assess the effects of Quaternary glaciation on a Holarctic sexual zooplankter, Daphnia galeata, with apparently marked dispersal capacity and a widespread hybrid lineage in the New World. We collected samples of this species from 148 Holarctic lakes, analysed the nuclear and mitochondrial gene sequences, and tested predictions for hypotheses that account for the origin and spread of the New World D. galeata. We detected five nuclear phylogroups and four mitochondrial phylogroups, most of which were restricted to either the New World or the Old World. The oldest mitochondrial phylogroup was restricted to Japan. One major mitochondrial clade was distributed throughout the Holarctic, but only four haplotypes were shared among continents, and analysis of molecular variance indicated significant structure at the continental level. Haplotype sharing among continents could largely be attributed to anthropogenic introductions. Mismatch distributions, haplotype networks, phylogenetic trees, longitudinal haplotype diversity erosion and coalescence analyses are consistent with colonization from an Old World and a New World refugium. Our nuclear and mitochondrial DNA sequence evidence supports the hypothesis that the New World D. galeata underwent introgression with Daphnia dentifera, with dispersal being enhanced by glaciation. We conclude that Quaternary glaciation had a pronounced effect on the diversification of a Holarctic sexual zooplankter.


Assuntos
Daphnia/genética , Zooplâncton/genética , Animais , Evolução Biológica , DNA Mitocondrial/genética , Daphnia/classificação , Daphnia/fisiologia , Evolução Molecular , Fluxo Gênico , Geografia , Proteínas de Choque Térmico HSP90/genética , Haplótipos , Filogenia , Reação em Cadeia da Polimerase , Zooplâncton/classificação , Zooplâncton/fisiologia
6.
Mol Ecol ; 14(2): 525-37, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15660943

RESUMO

The role of among-species gene flow in eukaryotic evolution remains controversial. Putative hybrid lineages are common in water fleas, but their ecological success is often associated with polyploidy and the production of asexual propagules. Advanced hybrid lineages with sexual propagules are expected to be geographically restricted because their successful dispersal is contingent on overcoming fertility complications, assimilation by parent taxa, and competition with parent taxa. Here we provide evidence that a diploid lineage of Daphnia has been formed by introgression between distantly related species and attained a broad distribution (Nearctic) despite its requirement for sexual propagules. The evidence is based on geographical discordance, phylogenetic discordance, recombinant genotypes and additive genotypes of the nuclear internal transcribed spacer regions (ITS) and mitochondrial DNA. Additive genotypes also provided evidence of hybridization between introduced European Daphnia and North American Daphnia. We argue that the unique biology of Holarctic lacustrine water fleas and the spatial separation of lineages during Pleistocene glaciation have promoted hybridization and its evolutionary consequences.


Assuntos
Daphnia/genética , Genética Populacional , Hibridização Genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Clonagem Molecular , Primers do DNA , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Europa (Continente) , Genótipo , Geografia , Modelos Genéticos , Dados de Sequência Molecular , América do Norte , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA