Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microorganisms ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674780

RESUMO

The benefits of probiotics on dysbiotic microbiomes and inflammation are dependent on the tested strain, host factors, and the resident microbiome. There is limited knowledge on the effects of probiotics in A. actinomycetemcomitans-associated periodontitis. Thus, Lactobacillus acidophilus LA5 (LA5) was orally inoculated for 30 days in C57Bl/6 mice infected with A. actinomycetemcomitans JP2 (Aa) and S. gordonii (Sg). Alveolar bone loss, gingival gene expression, and oral and gut microbiomes were determined. LA5 controlled bone loss in Aa+Sg-infected mice, downregulated the expression of Il-1ß and upregulated Il-10 in gingival tissues, and altered the oral and gut microbiomes. LA5 increased the diversity of the oral microbiome of Aa+Sg infected mice, and Aa+Sg and Aa+Sg+LA5 oral or gut microbiomes clustered apart. LA5 induced shifts in Aa+Sg infected mice by increasing the abundance of Muribaculaceae and decreasing Bifidobacteriaceae in the oral cavity and increasing the abundance of Verrucomicrobiae and Eggerthellales in the gut. In conclusion, LA5 oral administration controls experimental Aa-associated periodontitis by altering inflammatory gene expression and the oral and gut microbiomes.

2.
J Periodontal Res ; 58(5): 1006-1019, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482954

RESUMO

OBJECTIVE: To determine whether Bifidobacterium animalis subspecies lactis HN019 (B. lactis HN019) can reduce the sequelae of experimental periodontitis (EP) in rats modulating systemic parameters. BACKGROUND: This study evaluated the effects of probiotic therapy (PROB) in the prevention of local and systemic damage resulting from EP. METHODS: Forty-eight rats were allocated into four groups: C (control), PROB, EP, and EP-PROB. PROB (1 × 1010 CFU/mL) administration lasted 8 weeks and PE was induced on the 7th week by placing ligature on the animals' lower first molars. All animals were euthanized in the 9th week of the experiment. Biomolecular analyses, RT-PCR, and histomorphometric analyses were performed. The data obtained were analyzed statistically (ANOVA, Tukey, p < .05). RESULTS: The EP group had higher dyslipidemia when compared to the C group, as well as higher levels of insulin resistance, proteinuria levels, percentages of systolic blood pressure, percentage of fatty hepatocytes in the liver, and expression of adipokines was up-regulated (LEPR, NAMPT, and FABP4). All these parameters (except insulin resistance, systolic blood pressure, LEPR and FABP4 gene expression) were reduced in the EP-PROB group when compared to the EP group. The EP group had lower villus height and crypt depth, as well as a greater reduction in Bacteroidetes and a greater increase in Firmicutes when compared to the EP-PROB group. Greater alveolar bone loss was observed in the EP group when compared to the EP-PROB group. CONCLUSION: Bifidobacterium lactis HN019 can reduce the sequelae of EP in rats modulating intestinal parameters, attenuating expression of lipogenic genes and hepatic steatosis.


Assuntos
Bifidobacterium animalis , Fígado Gorduroso , Resistência à Insulina , Periodontite , Probióticos , Ratos , Animais , Bifidobacterium animalis/fisiologia , Probióticos/uso terapêutico , Periodontite/prevenção & controle , Mucosa Intestinal
3.
J Periodontol ; 94(11): 1363-1375, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37057371

RESUMO

BACKGROUND: This study evaluated the systemic (intestine and adipose tissue) and local (periodontal tissues) impact of probiotic therapy in rats with metabolic syndrome (MS) associated or not with periodontitis (PE). METHODS: Forty-eight rats received a high-fat diet for induction of MS for 16 weeks. They were subdivided into groups with (+) and without (-) PE, receiving (*) or not (**) receiving probiotics (PROB): MS (-**), MSP (-*), MSPE (+**), and MSPEP (+*). PROB administration (Bifidobacterium animalis subsp. lactis HN019) started on the 8th week of the study and PE was induced on the 14th week by placing ligature on the animals' lower first molars. Euthanasia occurred in the 16th week. Biomolecular, immunoenzymatic assays, and histomorphometric analyses were performed. The data obtained were statistically analyzed (ANOVA, Tukey, p < 0.05). RESULTS: The MSPEP group exhibited reduced alveolar bone loss when compared with the MSPE group, as well as lower levels of hepatic steatosis and proteinuria (p < 0.05). In the intestinal environment, the MSPE group exhibited significantly lower villus height and crypt depth, as well as a greater increase in Bacillota when compared with the MSPEP group (p < 0.05). The MSPEP group showed lower adipokine gene expression (LEPR, NAMPT, and FABP4) in adipose tissue than the MSPE group (p < 0.05). CONCLUSION: The probiotic B. lactis HN019 reduced the severity of experimental periodontitis and modulated the expression of lipogenic genes and intestinal morphological and microbiological parameters in rats with MS.


Assuntos
Bifidobacterium animalis , Síndrome Metabólica , Periodontite , Probióticos , Ratos , Animais , Síndrome Metabólica/complicações , Periodontite/terapia , Periodontite/metabolismo , Intestinos/microbiologia , Probióticos/uso terapêutico , Probióticos/farmacologia
4.
Front Microbiol ; 13: 846192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602018

RESUMO

Probiotics may be considered as an additional strategy to achieve a balanced microbiome in periodontitis. However, the mechanisms underlying the use of probiotics in the prevention or control of periodontitis are still not fully elucidated. This in vitro study aimed to evaluate the effect of two commercially available strains of lactobacilli on gingival epithelial cells (GECs) challenged by Aggregatibacter actinomycetemcomitans. OBA-9 GECs were infected with A. actinomycetemcomitans strain JP2 at an MOI of 1:100 and/or co-infected with Lactobacillus acidophilus La5 (La5) or Lacticaseibacillus rhamnosus Lr32 (Lr32) at an MOI of 1:10 for 2 and 24 h. The number of adherent/internalized bacteria to GECs was determined by qPCR. Production of inflammatory mediators (CXCL-8, IL-1ß, GM-CSF, and IL-10) by GECs was determined by ELISA, and the expression of genes encoding cell receptors and involved in apoptosis was determined by RT-qPCR. Apoptosis was also analyzed by Annexin V staining. There was a slight loss in OBA-9 cell viability after infection with A. actinomycetemcomitans or the tested probiotics after 2 h, which was magnified after 24-h co-infection. Adherence of A. actinomycetemcomitans to GECs was 1.8 × 107 (± 1.2 × 106) cells/well in the mono-infection but reduced to 1.2 × 107 (± 1.5 × 106) in the co-infection with Lr32 and to 6 × 106 (± 1 × 106) in the co-infection with La5 (p < 0.05). GECs mono-infected with A. actinomycetemcomitans produced CXCL-8, GM-CSF, and IL-1ß, and the co-infection with both probiotic strains altered this profile. While the co-infection of A. actinomycetemcomitans with La5 resulted in reduced levels of all mediators, the co-infection with Lr32 promoted reduced levels of CXCL-8 and GM-CSF but increased the production of IL-1ß. The probiotics upregulated the expression of TLR2 and downregulated TLR4 in cells co-infected with A. actinomycetemcomitans. A. actinomycetemcomitans-induced the upregulation of NRLP3 was attenuated by La5 but increased by Lr32. Furthermore, the transcription of the anti-apoptotic gene BCL-2 was upregulated, whereas the pro-apoptotic BAX was downregulated in cells co-infected with A. actinomycetemcomitans and the probiotics. Infection with A. actinomycetemcomitans induced apoptosis in GECs, whereas the co-infection with lactobacilli attenuated the apoptotic phenotype. Both tested lactobacilli may interfere in A. actinomycetemcomitans colonization of the oral cavity by reducing its ability to interact with gingival epithelial cells and modulating cells response. However, L. acidophilus La5 properties suggest that this strain has a higher potential to control A. actinomycetemcomitans-associated periodontitis than L. rhamnosus Lr32.

5.
Front Pharmacol ; 12: 713595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630089

RESUMO

Periodontitis is an inflammatory disease induced by a dysbiotic oral microbiome. Probiotics of the genus Bifidobacterium may restore the symbiotic microbiome and modulate the immune response, leading to periodontitis control. We evaluated the effect of two strains of Bifidobacterium able to inhibit Porphyromonas gingivalis interaction with host cells and biofilm formation, but with distinct immunomodulatory properties, in a mice periodontitis model. Experimental periodontitis (P+) was induced in C57Bl/6 mice by a microbial consortium of human oral organisms. B. bifidum 1622A [B+ (1622)] and B. breve 1101A [B+ (1101)] were orally inoculated for 45 days. Alveolar bone loss and inflammatory response in gingival tissues were determined. The microbial consortium induced alveolar bone loss in positive control (P + B-), as demonstrated by microtomography analysis, although P. gingivalis was undetected in oral biofilms at the end of the experimental period. TNF-α and IL-10 serum levels, and Treg and Th17 populations in gingiva of SHAM and P + B- groups did not differ. B. bifidum 1622A, but not B. breve 1101A, controlled bone destruction in P+ mice. B. breve 1101A upregulated transcription of Il-1ß, Tnf-α, Tlr2, Tlr4, and Nlrp3 in P-B+(1101), which was attenuated by the microbial consortium [P + B+(1101)]. All treatments downregulated transcription of Il-17, although treatment with B. breve 1101A did not yield such low levels of transcripts as seen for the other groups. B. breve 1101A increased Th17 population in gingival tissues [P-B+ (1101) and P + B+ (1101)] compared to SHAM and P + B-. Administration of both bifidobacteria resulted in serum IL-10 decreased levels. Our data indicated that the beneficial effect of Bifidobacterium is not a common trait of this genus, since B. breve 1101A induced an inflammatory profile in gingival tissues and did not prevent alveolar bone loss. However, the properties of B. bifidum 1622A suggest its potential to control periodontitis.

6.
Mol Oral Microbiol ; 36(1): 92-102, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33372378

RESUMO

Periodontitis is characterized by a dysbiotic microbial community and treatment strategies include the reestablishment of symbiosis by reducing pathogens abundance. Aggregatibacter actinomycetemcomitans (Aa) is frequently associated with rapidly progressing periodontitis. Since the oral ecosystem may be affected by metabolic end-products of bacteria, we evaluated the effect of soluble compounds released by probiotic lactobacilli, known as postbiotics, on Aa biofilm and expression of virulence-associated genes. Cell-free pH-neutralized supernatants (CFS) of Lactobacillus rhamnosus Lr32, L. rhamnosus HN001, Lactobacillus acidophilus LA5, and L. acidophilus NCFM were tested against a fimbriated clinical isolate of Aa JP2 genotype (1 × 107  CFU/well) on biofilm formation for 24 hr, and early and mature preformed biofilms (2 and 24 hr). Lactobacilli CFS partially reduced Aa viable counts and biofilms biomass, but did not affect the number of viable non-adherent bacteria, except for LA5 CFS. Furthermore, LA5 CFS and, in a lesser extent HN001 CFS, influenced Aa preformed biofilms. Lactobacilli postbiotics altered expression profile of Aa in a strain-specific fashion. Transcription of cytolethal distending toxin (cdtB) and leukotoxin (ltxA) was downregulated by CFS of LA5 and LR32 CFS. Although all probiotics produced detectable peroxide, transcription of katA was downregulated by lactobacilli CFS. Transcription of dspB was abrogated by LR32 and NCFM CFS, but increased by HN001, whereas expression of pgA was not affected by any postbiotic. Our data indicated the potential of postbiotics from lactobacilli, especially LA5, to reduce colonization levels of Aa and to modulate the expression of virulence factors implicated in evasion of host defenses.


Assuntos
Lactobacillus , Probióticos , Aggregatibacter actinomycetemcomitans/genética , Biofilmes , Ecossistema , Lactobacillus/genética , Virulência
7.
J Periodontal Res ; 54(2): 115-127, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30284741

RESUMO

BACKGROUND AND OBJECTIVE: Although previous studies revealed the potential use of probiotics in the control of periodontitis, little is known about their interactions with gingival epithelial cells (GECs). Since GECs comprise the first defense in the subgingival microenvironment, the aim of this study was to evaluate the effect of probiotic lactobacilli and bifidobacteria strains on OBA-9 cells challenged with Porphyromonas gingivalis. METHODS: Immortalized human GECs (OBA-9) were challenged with live P. gingivalis (strains W83 and ATCC33277) and co-infected with one of 12 tested probiotic strains at a multiplicity of infection (MOI) of 1:1000 for 2 hours. Bacterial adhesion and invasion were determined by antibiotic exclusion analysis and CFU counting. OBA-9 viability was assessed by MTT assay, and levels of inflammatory mediators (TNF-α, IL-1ß, and CXCL8) in the supernatants were determined by ELISA. The expression of genes encoding Toll-like receptors (TLR2, TLR4) was evaluated by RT-qPCR. RESULTS: Both strains of P. gingivalis were able to adhere and invade OBA-9 cells, with significant loss in cell viability, increase in the levels of TNF-α and IL-1ß, and upregulation of TLR4. However, co-infection with probiotics attenuated these effects in P. gingivalis challenged GECs. Most probiotics maintained OBA-9 viability and reduced pathogens adhesion and invasion. Furthermore, probiotics were able to adhere to GECs, which was enhanced for most strains in the presence of P. gingivalis. The synthesis of IL-1ß and TNF-α by P. gingivalis in challenged GECs was reduced in co-culture with most of the tested probiotics, whereas the secretion of CXCL8 increased, and TLR4 was downregulated. CONCLUSION: Probiotics can alter the interaction of GECs with P. gingivalis by modulating the pathogen's ability to adhere and invade these cells, as well as by regulating the innate immune response. Such properties are strain-specific and may indicate the most efficient probiotics to control periodontitis.


Assuntos
Antibiose/imunologia , Bifidobacterium/fisiologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Gengiva/citologia , Gengiva/imunologia , Imunidade Inata , Lactobacillus/fisiologia , Periodontite/prevenção & controle , Periodontite/terapia , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/patogenicidade , Probióticos , Células Cultivadas , Microambiente Celular/imunologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Periodontite/imunologia , Periodontite/microbiologia , Porphyromonas gingivalis/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Front Microbiol ; 8: 2280, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238325

RESUMO

Probiotics are live microorganisms that confer benefits to the host health. The infection rate of potentially pathogenic organisms such as Candida albicans, the most common agent associated with mucosal candidiasis, can be reduced by probiotics. However, the mechanisms by which the probiotics interfere with the immune system are largely unknown. We evaluated the effect of probiotic bacteria on C. albicans challenged human macrophages. Macrophages were pretreated with lactobacilli alone (Lactobacillus rhamnosus LR32, Lactobacillus casei L324m, or Lactobacillus acidophilus NCFM) or associated with Escherichia coli lipopolysaccharide (LPS), followed by the challenge with C. albicans or LPS in a co-culture assay. The expression of pattern-recognition receptors genes (CLE7A, TLR2, and TLR4) was determined by RT-qPCR, and dectin-1 reduced levels were confirmed by flow cytometry. The cytokine profile was determined by ELISA using the macrophage cell supernatant. Overall probiotic lactobacilli down-regulated the transcription of CLEC7A (p < 0.05), resulting in the decreased expression of dectin-1 on probiotic pretreated macrophages. The tested Lactobacillus species down-regulated TLR4, and increased TLR2 mRNA levels in macrophages challenged with C. albicans. The cytokines profile of macrophages challenged with C. albicans or LPS were altered by the probiotics, which generally led to increased levels of IL-10 and IL-1ß, and reduction of IL-12 production by macrophages (p < 0.05). Our data suggest that probiotic lactobacilli impair the recognition of PAMPs by macrophages, and alter the production of pro/anti-inflammatory cytokines, thus modulating inflammation.

9.
J Prosthodont ; 24(3): 194-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25143068

RESUMO

PURPOSE: The prevalence of Candida infections has been rising with an increasingly aging population and a larger population of immunocompromised individuals. The use of probiotics may be an alternative approach to antifungal agents in the prevention and treatment of oral candidiasis. This study aimed to evaluate the short-term effect of probiotics in reducing the infection level of oral Candida in candidiasis-asymptomatic elderly denture wearers. MATERIALS AND METHODS: In a double-blind randomized study, 59 denture wearers harboring Candida spp. in the oral cavity with no clinical symptoms were allocated into two groups: probiotic and placebo. All patients were instructed to clean the denture daily. The probiotic group poured a capsule containing lyophilized Lactobacillus rhamnosus HS111, Lactobacillus acidophillus HS101, and Bifidobacterium bifidum daily on the palatal surface of the maxillary denture, whereas the placebo group was submitted to the same regimen using placebo capsules. Candida spp. infection levels were evaluated in palate mucosa samples obtained before and after a 5-week experimental period. RESULTS: All patients harbored Candida in the palate mucosa at baseline. Fifty-five individuals completed the experimental period. The detection rate of Candida spp. was 92.0% in the placebo group after the experimental period, whereas it was reduced to 16.7% in the probiotic group. The reduction promoted by the probiotic regimen was independent of baseline characteristics such as Candida infection level and colonizing species, age of denture, and other variables. CONCLUSION: The probiotic product was effective in reducing the colonization of the oral cavity with Candida in candidiasis-asymptomatic elderly denture wearers, suggesting that this multispecies probiotic could be used to prevent oral candidiasis. CLINICAL IMPLICATIONS: Colonization of oral surfaces by Candida is considered a risk factor for invasive fungal infections. The use of a product with L. rhamnosus, L. acidophilus, and B. bifidum may represent an alternative treatment for reduction of Candida infections in elderly denture wearers.


Assuntos
Candida/efeitos dos fármacos , Candidíase Bucal/prevenção & controle , Candidíase Bucal/terapia , Dentaduras/microbiologia , Boca/microbiologia , Probióticos/uso terapêutico , Idoso , Bifidobacterium bifidum , Brasil , Desgaste de Restauração Dentária/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Lactobacillus acidophilus , Lacticaseibacillus rhamnosus , Masculino , Pessoa de Meia-Idade , Palato/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA