Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mucosal Immunol ; 15(5): 799-808, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468942

RESUMO

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated in the oral cavity in response to COVID-19 vaccination. We collected serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines and measured the level of anti-SARS-CoV-2 Ab. We detected anti-Spike and anti-Receptor Binding Domain (RBD) IgG and IgA, as well as anti-Spike/RBD associated secretory component in the saliva of most participants after dose 1. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited diminished anti-Spike/RBD IgG levels, although secretory component-associated anti-Spike Ab were more stable. Examining two prospective cohorts we found that participants who experienced breakthrough infections with SARS-CoV-2 variants had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data suggest that COVID-19 vaccines that elicit a durable IgA response may have utility in preventing infection. Our study finds that a local secretory component-associated IgA response is induced by COVID-19 mRNA vaccination that persists in some, but not all participants. The serum and saliva IgA response modestly correlate at 2-4 weeks post-dose 2. Of note, levels of anti-Spike serum IgA (but not IgG) at this timepoint are lower in participants who subsequently become infected with SARS-CoV-2. As new surges of SARS-CoV-2 variants arise, developing COVID-19 booster shots that provoke high levels of IgA has the potential to reduce person-to-person transmission.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Estudos Prospectivos , RNA Mensageiro/genética , SARS-CoV-2 , Componente Secretório , Vacinação
2.
J Immunol ; 208(2): 429-443, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34903642

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces T cell, B cell, and Ab responses that are detected for several months in recovered individuals. Whether this response resembles a typical respiratory viral infection is a matter of debate. In this study, we followed T cell and Ab responses in 24 mainly nonhospitalized human subjects who had recovered from PCR-confirmed SARS-CoV-2 infection at two time points (median of 45 and 145 d after symptom onset). Ab responses were detected in 95% of subjects, with a strong correlation between plasma and salivary anti-spike (anti-S) and anti-receptor binding domain IgG, as well as a correlation between circulating T follicular helper cells and the SARS-CoV-2-specific IgG response. T cell responses to SARS-CoV-2 peptides were determined using intracellular cytokine staining, activation markers, proliferation, and cytokine secretion. All study subjects had a T cell response to at least one SARS-CoV-2 Ag based on at least one T cell assay. CD4+ responses were largely of the Th1 phenotype, but with a lower ratio of IFN-γ- to IL-2-producing cells and a lower frequency of CD8+:CD4+ T cells than in influenza A virus (IAV)-specific memory responses within the same subjects. Analysis of secreted molecules also revealed a lower ratio of IFN-γ to IL-2 and an altered cytotoxic profile for SARS-CoV-2 S- and nucleocapsid-specific responses compared with IAV-specific responses. These data suggest that the memory T cell phenotype after a single infection with SARS-CoV-2 persists over time, with an altered cytokine and cytotoxicity profile compared with long-term memory to whole IAV within the same subjects.


Assuntos
Formação de Anticorpos , COVID-19/imunologia , Imunidade Celular , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
3.
Front Immunol ; 12: 742173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603329

RESUMO

Although anatomically distant from the central nervous system (CNS), gut-derived signals can dynamically regulate both peripheral immune cells and CNS-resident glial cells to modulate disease. Recent discoveries of specific microbial taxa and microbial derived metabolites that modulate neuroinflammation and neurodegeneration have provided mechanistic insight into how the gut may modulate the CNS. Furthermore, the participation of the gut in regulation of peripheral and CNS immune activity introduces a potential therapeutic target. This review addresses emerging literature on how the microbiome can affect glia and circulating lymphocytes in preclinical models of human CNS disease. Critically, this review also discusses how the host may in turn influence the microbiome, and how this may impact CNS homeostasis and disease, potentially through the production of IgA.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Microbioma Gastrointestinal/imunologia , Imunoglobulina A/imunologia , Neuroimunomodulação/imunologia , Animais , Humanos , Doenças Neuroinflamatórias/imunologia
4.
Immunol Rev ; 303(1): 119-137, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34046908

RESUMO

IgA is produced in large quantities at mucosal surfaces by IgA+ plasma cells (PC), protecting the host from pathogens, and restricting commensal access to the subepithelium. It is becoming increasingly appreciated that IgA+ PC are not constrained to mucosal barrier sites. Rather, IgA+ PC may leave these sites where they provide both host defense and immunoregulatory function. In this review, we will outline how IgA+ PC are generated within the mucosae and how they subsequently migrate to their "classical" effector site, the gut lamina propria. From there we provide examples of IgA+ PC displacement from the gut to other parts of the body, referencing examples during homeostasis and inflammation. Lastly, we will speculate on mechanisms of IgA+ PC displacement to other tissues. Our aim is to provide a new perspective on how IgA+ PC are truly fantastic beasts of the immune system and identify new places to find them.


Assuntos
Nódulos Linfáticos Agregados , Plasmócitos , Imunoglobulina A , Mucosa Intestinal , Linfonodos
5.
Sci Immunol ; 5(52)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033173

RESUMO

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor-binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Longitudinal analysis revealed that anti-SARS-CoV-2 IgA and IgM antibodies rapidly decayed, while IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in the majority of COVID-19 patients for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , COVID-19 , Infecções por Coronavirus/virologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA