Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 418: 110739, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38749263

RESUMO

Risky home canning techniques are still performed for food preservation due to limited science-based recommendations. This study aimed to evaluate the inactivation of Shiga toxin-producing Escherichia coli O157:H7, Salmonella enterica (ser. Typhimurium, Enteritidis, and Infantis) and Listeria monocytogenes during home canning with a household dishwasher. The 450 mL of blended tomato (acidic liquid food) and potato puree (non-acidic solid food) were prepared with 1.5 % salt and 25 mL vinegar as model foods in glass jars (660 mL). The two model foods were sterilized, then inoculated with separate cocktails of each pathogen at 106-107 CFU/g. The prepared jars were placed in the bottom rack of a dishwasher and subjected to the following cycles: economic (50 °C, 122 min), express (60 °C, 54 min), and intensive (70 °C, 96 min). Temperature changes in jars were monitored by using thermocouples during heat treatment. Within the center of the jars, temperatures were measured as 45 to 53 °C in blended tomato and 44 to 52 °C in potato puree during all tested dishwasher cycles, respectively. The economic cycle treatment reduced S. enterica, E. coli O157:H7, and L. monocytogenes populations by 3.1, 4.6, and 4.2 log CFU/g in blended tomato (P ≤ 0.05), where a <1.0 log reduction was observed in potato puree (P > 0.05). All pathogens showed similar heat resistance during the express cycle treatment with a log reduction ranging from 4.2 to 5.0 log CFU/g in blended tomato and 0.6 to 0.7 log CFU/g in potato puree. Reduction in L. monocytogenes population was limited (0.6 log CFU/g) compared to E. coli O157:H7 (2.0 log CFU/g) and S. enterica (2.7 log CFU/g) in blended tomato during the intensive cycle treatment (P ≤ 0.05). Dishwasher cycles at manufacturer defined settings failed to adequately inactivate foodborne pathogens in model foods. This study indicates that home-canned vegetables may cause foodborne illnesses when dishwashers in home kitchens are used for heat processing.


Assuntos
Escherichia coli O157 , Microbiologia de Alimentos , Conservação de Alimentos , Listeria monocytogenes , Solanum lycopersicum , Listeria monocytogenes/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Conservação de Alimentos/métodos , Salmonella enterica/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , Manipulação de Alimentos/métodos , Contagem de Colônia Microbiana , Contaminação de Alimentos/prevenção & controle
2.
Int J Food Microbiol ; 414: 110612, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38325258

RESUMO

Microgreens can be contaminated by various preharvest sources including soilless substrate, plant nutrition solution, water and seeds. The aim of this study was to determine the transfer level of Salmonella, Shiga toxin-producing Escherichia coli O157:H7, and Listeria monocytogenes to the edible part of various type of microgreens from plant nutrient solution-soaked perlite as soilless substrate or seeds. Ampicillin resistant 3-strain cocktails of Salmonella and E. coli O157:H7 and non-resistant L. monocytogenes were independently inoculated into plant nutrient solution-soaked perlite and seeds in low (102-103 CFU/g) and high (105-106 CFU/g) populations. Twenty types of microgreens were grown in inoculated perlite. The seed inoculation was performed on five types of microgreens. Correlations between pathogen transfer levels with seed characteristics and harvest time were assessed. Pathogen populations (1.6 ± 0.2 to 7.7 ± 0.1 log CFU/g) transferred to microgreens were dependent on type of pathogen and microgreen but not affected by contamination source and inoculation level. The level of pathogen transferred to microgreens had a moderate to high negative correlations (R2) with seed surface area (-0.551 to -0.781), seed weight (-0.735 to -0.818), and harvest time (-0.332 to -0.919) when grown in Salmonella and E. coli O157:H7 inoculated perlite. This study suggests a high risk of pathogen population transferring to microgreens in case of seed or soilless substrate contamination when pathogen growth or survival is supported in plant nutrient solution.


Assuntos
Óxido de Alumínio , Escherichia coli O157 , Listeria monocytogenes , Dióxido de Silício , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Salmonella , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA