Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(24): 9213-9242, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289974

RESUMO

Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Capsaicina , Sinais (Psicologia) , Regulação da Expressão Gênica , Frutas/química , Carotenoides/metabolismo
2.
Plant Physiol Biochem ; 196: 415-430, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758289

RESUMO

The members of ZRT, IRT-like protein (ZIP) family are involved in the uptake and transportation of several metal ions. Here, we report a comprehensive identification of ZIP transporter genes from Capsicum annuum, C. chinense, and C. baccatum, and their expression analysis under Zn and Fe stress. Changes in root morphology and differential accumulation of several metabolites from sugars, amino acids, carboxylic acids, and fatty acids in root and leaf tissues of plants in the absence of Zn and Fe were observed. Further, metabolites such as L-aspartic acid, 2-ketoglutaric acids, ß-L-fucopyranose, quininic acid, chlorogenic acid, and aucubin were significantly upregulated in root and leaf tissues under Zn/Fe deprived conditions. qRT-PCR analysis of 17 CaZIPs in different tissues revealed tissue-specific expression of CaZIP1-2, CaZIP4-8, CaZIP13, and CaZIP16-17 under normal conditions. However, the absence of Zn and Fe significantly induced the expression of CaZIP4-5, CaZIP7-9, and CaZIP14 genes in root and leaf tissues. Additionally, in the absence of Fe, upregulation of CaZIP4-5 and CaZIP8 and increased uptake of mineral elements Cu, Zn, Mg, P, and S were observed in roots, suggesting their potential role in metal-ion uptake in Capsicum. The identified genes provide the basis for future studies of mineral uptake and their biofortification to increase the nutritional values in Capsicum.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Verduras , Regulação da Expressão Gênica de Plantas
3.
J Agric Food Chem ; 71(1): 65-95, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36584279

RESUMO

The fruits of the tomato crop (Solanum lycopersicum L.) are increasingly consumed by humans worldwide. Due to their rich nutritional quality, pharmaceutical properties, and flavor, tomato crops have gained a salient role as standout crops among other plants. Traditional breeding and applied functional research have made progress in varying tomato germplasms to subdue biotic and abiotic stresses. Proteomic investigations within a span of few decades have assisted in consolidating the functional genomics and transcriptomic research. However, due to the volatility and dynamicity of proteins in the regulation of various biosynthetic pathways, there is a need for continuing research in the field of proteomics to establish a network that could enable a more comprehensive understanding of tomato growth and development. With this view, we provide a comprehensive review of proteomic studies conducted on the tomato plant in past years, which will be useful for future breeders and researchers working to improve the tomato crop.


Assuntos
Proteômica , Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Frutas/metabolismo , Melhoramento Vegetal , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Funct Integr Genomics ; 22(6): 1189-1209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36173582

RESUMO

To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.


Assuntos
Capsicum , Capsicum/genética , Capsicum/química , Capsicum/metabolismo , Frutas/genética , Carotenoides/metabolismo , Transcriptoma , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Microorganisms ; 10(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35630510

RESUMO

This investigation presents a novel finding showing the effect of culture filtrates (CFs) of macrofungi, Ganoderma lucidum, against Meloidogyne incognita evaluated in vitro and in planta. To determine the nematicidal activity, juveniles of M. incognita were exposed to Ganoderma CFs of three different ages (Two, four and eight weeks old) of pileus and stipe at different concentrations, i.e., 100%, 50%, 10% and 1% for different time intervals (12, 24, 48 and 72 h). Ganoderma species were examined morphologically based on external appearance and analytically using SEM. The ethanolic samples of basidiocarp were prepared and analyzed for in vitro nematicidal assay and different bioactive compounds. The in vitro experiment results revealed that among all three ages of pileus and stipe, two-week-old pileus and stipe exhibited great nematotoxic potency and caused 83.8% and 73.8% juveniles' mortality at 100% concentration after 72 h of exposure time, respectively. Similarly, the two-week-old pileus and stipe showed the highest egg hatching inhibition of 89.2% and 81.0% at the 100% concentration after five days. The eight-week-old pileus and stipe were not more effective than the two- and four-week-old pileus and stipe. The metabolites were characterized using GC-MS, including sugar alcohol, steroids, silanes, glucosides, pyrones, ester, oleic acid, phthalic acid, linoleic acid, palmitates and ketones. The in planta study conducted in the greenhouse demonstrated that the root dip treatment for 30 min with Ganoderma CFs curtailed the infection level of M. incognita and promoted the eggplant plant growth. The maximum percent increase in plant length, plant fresh weight, plant dry weight, total chlorophyll, carotenoids and yield/plant was obtained at 100% conc. of fungus CFs, whereas a reduction was observed in nematode infestation parameters. It was concluded from the study that Ganoderma CFs can be explored as an effective and eco-friendly antinemic biocontrol agent in fields infected with root-knot nematodes.

6.
J Proteomics ; 261: 104578, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398364

RESUMO

Capsicum belonging to the family Solanaceae is one of the most widely consumed crops in the world as a vegetable, spice and a raw salad and is distinctly valuable for its spicy pungent flavour. Proteomic investigation of crop plants is an essential step towards deciphering the functional basis of traits in an organism and to deepen our understanding on the regulation of various developmental patterns, biotic, and abiotic stress response and tolerance mechanisms. The differential proteome expression profiling of tissues during different developmental stages and under different conditions may indicate the specific proteome dynamics involved in the developmental programs and under stress conditions. Although substantial progress in proteomics of other Solanaceae plants has been made in the past two decades, a comprehensive review on Capsicum proteomics is still lacking. This review provides updated information on the advancement of Capsicum proteomic study in cytoplasmic male sterility, during fruit development and ripening, and under different biotic and abiotic stresses. Although limited information is available on the post translational protein modifications in Capsicum, a brief outline is given at the end detailing various post translational modifications. This proteomic update on Capsicum will be useful for future studies aimed at Capsicum improvement programs.


Assuntos
Capsicum , Solanaceae , Capsicum/fisiologia , Proteoma/metabolismo , Proteômica , Estresse Fisiológico , Verduras
7.
Front Plant Sci ; 12: 721265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721453

RESUMO

Myeloblastosis (MYB) genes are important transcriptional regulators of plant growth, development, and secondary metabolic biosynthesis pathways, such as capsaicinoid biosynthesis in Capsicum. Although MYB genes have been identified in Capsicum annuum, no comprehensive study has been conducted on other Capsicum species. We identified a total of 251 and 240 MYB encoding genes in Capsicum chinense MYBs (CcMYBs) and Capsicum baccatum MYBs (CbMYBs). The observation of twenty tandem and 41 segmental duplication events indicated expansion of the MYB gene family in the C. chinense genome. Five CcMYB genes, i.e., CcMYB101, CcMYB46, CcMYB6, CcPHR8, and CcRVE5, and two CaMYBs, i.e., CaMYB3 and CaHHO1, were found within the previously reported capsaicinoid biosynthesis quantitative trait loci. Based on phylogenetic analysis with tomato MYB proteins, the Capsicum MYBs were classified into 24 subgroups supported by conserved amino acid motifs and gene structures. Also, a total of 241 CcMYBs were homologous with 225 C. annuum, 213 C. baccatum, 125 potato, 79 tomato, and 23 Arabidopsis MYBs. Synteny analysis showed that all 251 CcMYBs were collinear with C. annuum, C. baccatum, tomato, potato, and Arabidopsis MYBs spanning over 717 conserved syntenic segments. Using transcriptome data from three fruit developmental stages, a total of 54 CcMYBs and 81 CaMYBs showed significant differential expression patterns. Furthermore, the expression of 24 CcMYBs from the transcriptome data was validated by quantitative real-time (qRT) PCR analysis. Eight out of the 24 CcMYBs validated by the qRT-PCR were highly expressed in fiery hot C. chinense than in the lowly pungent C. annuum. Furthermore, the co-expression analysis revealed several MYB genes clustered with genes from the capsaicinoid, anthocyanin, phenylpropanoid, carotenoid, and flavonoids biosynthesis pathways, and related to determining fruit shape and size. The homology modeling of 126 R2R3 CcMYBs showed high similarity with that of the Arabidopsis R2R3 MYB domain template, suggesting their potential functional similarity at the proteome level. Furthermore, we have identified simple sequence repeat (SSR) motifs in the CcMYB genes, which could be used in Capsicum breeding programs. The functional roles of the identified CcMYBs could be studied further so that they can be manipulated for Capsicum trait improvement.

8.
Genomics ; 111(6): 1913-1922, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30615924

RESUMO

The molecular mechanism of the underlying genes involved in the process of fruit ripening in Capsicum (family Solanaceae) is not clearly known. In the present study, we identified orthologs of 32 fruit development/ripening genes of tomato in Capsicum, and validated their expression in fruit development stages in C. annuum, C. frutescens, and C. chinense. In silico expression analysis using transcriptome data identified a total of 12 out of 32 genes showing differential expression during different stages of fruit development in Capsicum. Real time expression identified gene LOC107847473 (ortholog of MADS-RIN) had substantially higher expression (>500 folds) in breaker and mature fruits, which suggested the non-climacteric ripening behaviour of Capsicum. However, differential expression of Ehtylene receptor 2-like (LOC107873245) gene during fruit maturity supported the climacteric behaviour of only C. frutescens (hot pepper). Furthermore, development of 49 gene based simple sequence repeat (SSR) markers would help in selection of identified genes in Capsicum breeding.


Assuntos
Capsicum/fisiologia , Frutas/fisiologia , Genes de Plantas , Marcadores Genéticos , Simulação por Computador , Frutas/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Solanum lycopersicum/genética , Repetições de Microssatélites , Proteínas de Plantas/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA