Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int Heart J ; 62(6): 1358-1368, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34744144

RESUMO

Transcription factor E3 (TFE3), which is a key regulator of cellular adaptation, is expressed in most tissues, including the heart, and is reportedly overexpressed during cardiac hypertrophy. In this study, TFE3's role in cardiac hypertrophy was investigated. To understand TFE3's physiological importance in cardiac hypertrophy, pressure-overload cardiac hypertrophy was induced through transverse aortic constriction (TAC) in both wild-type (WT) and TFE3 knockout mice (TFE3-/-). Eleven weeks after TAC induction, cardiac hypertrophy was observed in both WT and TFE3-/- mice. However, significant reductions in ejection fraction and fractional shortening were observed in WT mice compared to TFE3-/- mice. To understand the mechanism, we found that myosin heavy chain (Myh7), which increases during hemodynamic overload, was lower in TFE3-/- TAC mice than in WT TAC mice, whereas extracellular signal-regulated protein kinases (ERK) phosphorylation, which confers cardioprotection, was lower in the left ventricles of WT mice than in TFE3-/- mice. We also found high expressions of TFE3, histone, and MYH7 and low expression of pERK in the normal human heart compared to the hypertensive heart. In the H9c2 cell line, we found that ERK inhibition caused TFE3 nuclear localization. In addition, we found that MYH7 was associated with TFE3, and during TFE3 knockdown, MYH7 and histone were downregulated. Therefore, we showed that TFE3 expression was increased in the mouse model of cardiac hypertrophy and tissues from human hypertensive hearts, whereas pERK was decreased reversibly, which suggested that TFE3 is involved in cardiac hypertrophy through TFE3-histone-MYH7-pERK signaling.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cardiomegalia/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Modelos Animais de Doenças , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Histonas/metabolismo , Humanos , Hipertensão/metabolismo , Camundongos Knockout , Cadeias Pesadas de Miosina/metabolismo , Fosforilação
2.
Sci Rep ; 8(1): 11246, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050137

RESUMO

Brugada syndrome (BrS) is an inherited cardiac arrhythmia commonly associated with SCN5A mutations, yet its ionic mechanisms remain unclear due to a lack of cellular models. Here, we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a BrS patient (BrS1) to evaluate the roles of Na+ currents (INa) and transient outward K+ currents (Ito) in BrS induced action potential (AP) changes. To understand the role of these current changes in repolarization we employed dynamic clamp to "electronically express" IK1 and restore normal resting membrane potentials and allow normal recovery of the inactivating currents, INa, ICa and Ito. HiPSC-CMs were generated from BrS1 with a compound SCN5A mutation (p. A226V & p. R1629X) and a healthy sibling control (CON1). Genome edited hiPSC-CMs (BrS2) with a milder p. T1620M mutation and a commercial control (CON2) were also studied. CON1, CON2 and BrS2, had unaltered peak INa amplitudes, and normal APs whereas BrS1, with over 75% loss of INa, displayed a loss-of-INa basal AP morphology (at 1.0 Hz) manifested by a reduced maximum upstroke velocity (by ~80%, p < 0.001) and AP amplitude (p < 0.001), and an increased phase-1 repolarization pro-arrhythmic AP morphology (at 0.1 Hz) in ~25% of cells characterized by marked APD shortening (~65% shortening, p < 0.001). Moreover, Ito densities of BrS1 and CON1 were comparable and increased from 1.0 Hz to 0.1 Hz by ~ 100%. These data indicate that a repolarization deficit could be a mechanism underlying BrS.


Assuntos
Síndrome de Brugada/fisiopatologia , Potenciais da Membrana , Miócitos Cardíacos/patologia , Potássio/metabolismo , Sódio/metabolismo , Diferenciação Celular , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Técnicas de Patch-Clamp , Células-Tronco Pluripotentes/fisiologia
3.
Stem Cell Res Ther ; 6: 39, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25889101

RESUMO

INTRODUCTION: Type 1 long QT syndrome (LQT1) is a common type of cardiac channelopathy associated with loss-of-function mutations of KCNQ1. Currently there is a lack of drugs that target the defected slowly activating delayed rectifier potassium channel (IKs). With LQT1 patient-specific human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs), we tested the effects of a selective IKs activator ML277 on reversing the disease phenotypes. METHODS: A LQT1 family with a novel heterozygous exon 7 deletion in the KCNQ1 gene was identified. Dermal fibroblasts from the proband and her healthy father were reprogrammed to hiPSCs and subsequently differentiated into hiPSC-CMs. RESULTS: Compared with the control, LQT1 patient hiPSC-CMs showed reduced levels of wild type KCNQ1 mRNA accompanied by multiple exon skipping mRNAs and a ~50% reduction of the full length Kv7.1 protein. Patient hiPSC-CMs showed reduced IKs current (tail current density at 30 mV: 0.33±0.02 vs. 0.92±0.21, P<0.05) and prolonged action potential duration (APD) (APD 50 and APD90: 603.9±39.2 vs. 319.3±13.8 ms, P<0.005; and 671.0±41.1 vs. 372.9±14.2 ms, P<0.005). ML277, a small molecule recently identified to selectively activate KV7.1, reversed the decreased IKs and partially restored APDs in patient hiPSC-CMs. CONCLUSIONS: From a LQT1 patient carrying a novel heterozygous exon7 deletion mutation of KCNQ1, we generated hiPSC-CMs that faithfully recapitulated the LQT1 phenotypes that are likely associated with haploinsufficiency and trafficking defect of KCNQ1/Kv7.1. The small molecule ML277 restored IKs function in hiPSC-CMs and could have therapeutic value for LQT1 patients.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/citologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Síndrome de Romano-Ward/genética , Potenciais de Ação/fisiologia , Adulto , Diferenciação Celular , Linhagem Celular , Técnicas de Reprogramação Celular , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Piperidinas/uso terapêutico , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Deleção de Sequência/genética , Tiazóis/uso terapêutico , Compostos de Tosil/uso terapêutico , Adulto Jovem
4.
Curr Neurovasc Res ; 6(1): 42-53, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19355925

RESUMO

Neurospheres can be generated from the mouse fetal forebrain by exposing multipotent neural stem cells (NSCs) to epidermal growth factor (EGF). In the presence of EGF, NSCs can proliferate continuously while retaining the potential to differentiate into neurons, astrocytes and oligodendrocytes. We examined the expression pattern of the neurotrophin (NT) receptors tropomysin-related kinase (TRK)-A, TRK-B, TRK-C and p75 neurotrophin receptor (p75(NTR)) in NSCs and the corresponding lineage cells. Furthermore, we analyzed the action of the NT Brain-Derived Neurotrophic Factor (BDNF) on NSCs' behavior. The effects of BDNF on NSC proliferation and differentiation were examined together with the signaling pathways by which BDNF receptors transduce signaling effects. We found that all the known NT receptors, including the truncated isoforms of TRK-B (t-TRK-B) and TRK-C (t-TRK-C), were expressed by Nestin-positive cells within the neurosphere. Proliferation was enhanced in Nestin-positive and BrdU-positive cells in the presence of BDNF. In particular, we show that t-TRK-B was abundantly expressed in NSCs and the corresponding differentiated glia cells while full length TRK-B (fl-TRK-B) was expressed in fully differentiated post-mitotic neurons such as the neuronal cells of the newborn mouse cortex, suggesting that BDNF may exert its proliferative effects on NSCs through the t-TRK-B receptor. Finally, we analyzed the cell fates of NSCs differentiated with BDNF in the absence of EGF and we demonstrate that BDNF stimulated the formation of differentiated cell types in different proportions through the MAP kinase, AKT and STAT-3 signaling pathways. Thus, the in-vivo regulation of neurogenesis may be mediated by the summation of signals from the BDNF receptors, in particular the t-TRK-B receptor, regulating physiological fates as diverse as normal neural replacement, excessive neural loss, or tumor development.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Neurônios/fisiologia , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Variância , Animais , Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Feminino , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma , Proteína Oncogênica v-akt/metabolismo , Gravidez , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Transfecção/métodos
5.
Mol Biol Cell ; 20(1): 188-99, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18971377

RESUMO

Besides its wide range of action as a proinflammatory cytokine in the immune system, interleukin-6 (IL-6) has also attracted much attention due to its influence on the nervous system. In the present study we show that the designer fusion protein H-IL-6, consisting of IL-6 and its specific receptor IL-6R-alpha, but not IL-6 alone, mediates both neuro- as well as gliogenesis. Using immunocytochemistry, Western blot, and patch-clamp recording, we demonstrate that H-IL-6 induces the differentiation of neural stem cells (NSCs) specifically into glutamate-responsive neurons and two morphological distinctive astroglia cell types. H-IL-6-activated neurogenesis seems to be induced by the MAPK/CREB (mitogen-activated protein kinase/cAMP response element-binding protein) cascade, whereas gliogenesis is mediated via the STAT-3 (signal transducers and activators of transcription protein-3) signaling pathway. Our finding that IL-6 mediates both processes depending on its specific soluble receptor sIL-6R-alpha has implications for the potential treatment of neurodegenerative diseases.


Assuntos
Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Células-Tronco/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Forma Celular , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Humanos , Interleucina-6/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Gravidez , Receptores de AMPA/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Proteínas Recombinantes de Fusão/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia
6.
Cell Res ; 16(11): 857-71, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17088897

RESUMO

Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Neurônios/citologia , Células-Tronco/citologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Expressão Gênica/genética , Humanos , Modelos Biológicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Neurônios/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/fisiologia , Células-Tronco/metabolismo
7.
J Neurosci Res ; 69(6): 869-79, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12205680

RESUMO

To scale up human neural stem/progenitor cell (NSPC) cultures for clinical use, we need to know how long these cells can live ex vivo without losing their ability to proliferate and differentiate; thus, a convenient method is needed to estimate the proliferative activity of human NSPCs grown in neurosphere cultures, as direct cell counting is laborious and potentially inaccurate. Here, we isolated NSPCs from human fetal forebrain and prepared neurosphere cultures. We determined the number of viable cells and estimated their proliferative activity in long-term culture using two methods that measure viable cell numbers indirectly, based on their metabolic activity: the WST-8 assay, in which a formazan dye is produced upon reduction of the water-soluble tetrazolium salt WST-8 by dehydrogenase activity, and the ATP assay, which measures the ATP content of the total cell plasma. We compared the results of these assays with the proliferative activity estimated by DNA synthesis using the 5-bromo-2'-deoxyuridine incorporation assay. We found the numbers of viable human NSPCs to be directly proportional to the metabolic reaction products obtained in the WST-8 and ATP assays. Both methods yielded identical cell growth curves, showing an exponentially proliferative phase and a change in the population doubling time in long-term culture. They also showed that human NSPCs could be expanded for up to 200 days ex vivo without losing their ability to proliferate and differentiate. Our findings indicated that indirect measurements of viable cells based on metabolic activity, especially the ATP assay, are very effective and reproducible ways to determine the numbers of viable human NSPCs in intact neurospheres.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Trifosfato de Adenosina/metabolismo , Antimetabólitos , Bromodesoxiuridina , Contagem de Células/métodos , Técnicas de Cultura de Células/métodos , Divisão Celular/fisiologia , Separação Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Feto/citologia , Feto/metabolismo , Humanos , Indicadores e Reagentes , Prosencéfalo/citologia , Prosencéfalo/embriologia , Sais de Tetrazólio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA