Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22521, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110488

RESUMO

In the modern world, wheat, a vital global cereal and the second most consumed, is vulnerable to climate change impacts. These include erratic rainfall and extreme temperatures, endangering global food security. Research on hydrogen-rich water (HRW) has gained momentum in plant and agricultural sciences due to its diverse functions. This study examined the effects of different HRW treatment durations on wheat, revealing that the 4-h treatment had the highest germination rate, enhancing potential, vigor, and germination indexes. This treatment also boosted relative water content, root and shoot weight, and average lengths. Moreover, the 4-h HRW treatment resulted in the highest chlorophyll and soluble protein concentrations in seeds while reducing cell death. The 4-h and 5-h HRW treatments significantly increased H2O2 levels, with the highest NO detected in both root and shoot after 4-h HRW exposure. Additionally, HRW-treated seeds exhibited increased Zn and Fe concentrations, along with antioxidant enzyme activities (CAT, SOD, APX) in roots and shoots. These findings suggest that HRW treatment could enhance wheat seed germination, growth, and nutrient absorption, thereby increasing agricultural productivity. Molecular analysis indicated significant upregulation of the Dreb1 gene with a 4-h HRW treatment. Thus, it shows promise in addressing climate change effects on wheat production. Therefore, HRW treatment could be a hopeful strategy for enhancing wheat plant drought tolerance, requiring further investigation (field experiments) to validate its impact on plant growth and drought stress mitigation.


Assuntos
Resiliência Psicológica , Plântula , Triticum , Secas , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Germinação , Água/metabolismo , Hidrogênio/metabolismo
2.
Heliyon ; 9(11): e21556, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027912

RESUMO

Gamma radiation has notable impacts on the flesh of mangoes. In this research, Katimon mangoes were subjected to different levels of irradiation (0.5, 1.0, 1.5, and 2.0 kGy) using a60Co irradiator. The results showed that irradiation significantly reduced the microbial population in the mango peels, with the 1.5 kGy dose showing the most significant reduction. Irradiation also delayed ripening and extended the shelf life of the mango peels. The total fat, protein, ash, moisture, and sugar content of the mango peels were all affected by irradiation. The total protein content, ash content and moisture content increased after irradiation, while the fat content remained relatively unchanged. The sugar content increased in all samples after storage, but the non-irradiated samples had higher sugar levels than the irradiated ones. The dietary fiber content of the mango peels was not significantly affected by irradiation. The vitamin C content decreased in all samples after storage. The titratable acidity and total soluble solids content of the mango peels increased after storage, but there were no significant differences between the irradiated and non-irradiated samples. Antioxidant activity and cytotoxicity assessment highlighted the antioxidant potential and reduced toxicity of irradiated samples. Additionally, the antimicrobial effectiveness of irradiated mango peels was evaluated. The most substantial inhibitory zones (measuring 16.90 ± 0.35) against Pseudomonas sp. were observed at a radiation dose of 1.5 kGy with 150 µg/disc. To identify potential antimicrobial agents, the volatile components of mangoes irradiated with 1.5 kGy were analyzed through GC-MS. Subsequently, these compounds were subjected to in silico studies against a viable protein, TgpA, of Pseudomonas sp. (PDB ID: 6G49). Based on molecular dynamic simulations and ADMET properties, (-)-Carvone (-6.2), p-Cymene (-6.1), and Acetic acid phenylmethyl ester (-6.1) were identified as promising compounds for controlling Pseudomonas sp.

3.
Biochem Res Int ; 2023: 8847876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780691

RESUMO

Infectious diseases pose a significant threat to human health worldwide. To address this challenge, we conducted a comprehensive study on the leaf and flower extracts of Clitoria ternatea plants. Our research encompassed in vitro assessments of their antibacterial, antibiofilm, antioxidant, and cytotoxic properties. Additionally, we employed in silico screening to identify promising compounds with potential applications in developing novel anti-Escherichia coli medications. Notably, our investigation revealed a remarkable inhibition zone of 13.00 ± 1 mm when applying the leaf extract (200 µg/ml) against E. coli, showcasing its potent antibacterial properties. Furthermore, both the leaf and flower extracts exhibited substantial biofilm inhibition efficacy against S. aureus, with inhibition percentages of 54% and 58%, respectively. In the realm of antioxidant activity, the leaf and flower extracts of C. ternatea displayed noteworthy DPPH free radical scavenging capabilities. Specifically, the leaf extract exhibited a substantial activity of 62.39% at a concentration of 150 µg/ml, while the flower extract achieved 44.08% at the same concentration. Our study also evaluated the impact on brine shrimp, where the floral extract displayed a significantly higher mortality rate of 93.33% at a dosage of 200 µg/ml compared to the leaf extract. To elucidate potential therapeutic targets, we utilized molecular docking techniques, focusing on the acbR protein (5ENR) associated with antibiotic resistance in E. coli. In this analysis, compounds isolated from the C. ternatea leaf extract, namely D1 (CID-14478556), D2 (CID-6423376), and D3 (CID-20393), exhibited binding energies of -8.2 kcal/mol, -6.5 kcal/mol, and -6.3 kcal/mol, respectively. Additionally, compounds from the flower extract, E1 (CID-5282761), E2 (CID-538757), and E3 (CID-536762), displayed binding energies of -5.4 kcal/mol, -5.3 kcal/mol, and -5.1 kcal/mol, respectively. In conclusion, the leaf and flower extracts derived from C. ternatea represent a promising natural resource with potential therapeutic applications in combating antibiotic-resistant pathogens.

4.
Heliyon ; 9(6): e17382, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484375

RESUMO

The harmful effects of chemical preservatives are driving the need for natural ones. To meet this demand, probiotic lactic acid bacteria (LAB) were isolated from fermented oats in this study. The goals of this study were to separate and identify probiotic LAB from fermented oats, to determine how effective these LAB are at combating pathogenic microorganisms in vitro, and to investigate their preservative capacity by applying the bacterium's cell-free supernatant (CFS) to specific fruits and fruit juice. The isolated strain was identified as Lactobacillus plantarum DMR14 using morphological, biochemical, and molecular investigation. Antimicrobial, antibiofilm, anti-oxidant, pH tolerance, and antibiotic resistance assays were used to evaluate the strain's probiotic potential, showing that Lactobacillus plantarum DMR14 had the strongest antagonistic and anti-biofilm capacity against Shigella boydii. Furthermore, the bacteriocin-containing compounds, cell-free supernatant (CFS) of the LAB, were tested against three fruits and one fruit juice, with the cell-free supernatant (CFS) of the bacterium lengthening the shelf life of the fruits compared to the untreated ones. Furthermore, while the concentration of coliform bacteria decreased in the treated sugarcane juice, an increase in the concentration of lactic acid bacteria suggested that the strain may be used as a fruit preservative in food industries.

5.
Biochem Res Int ; 2023: 9975275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181403

RESUMO

Despite treatments and vaccinations, it remains difficult to develop naturally occurring COVID-19 inhibitors. Here, our main objective is to find potential lead compounds from the retrieved alkaloids with antiviral and other biological properties that selectively target the main SARS-CoV-2 protease (Mpro), which is required for viral replication. In this work, 252 alkaloids were aligned using Lipinski's rule of five and their antiviral activity was then assessed. The prediction of activity spectrum of substances (PASS) data was used to confirm the antiviral activities of 112 alkaloids. Finally, 50 alkaloids were docked with Mpro. Furthermore, assessments of molecular electrostatic potential surface (MEPS), density functional theory (DFT), and absorption, distribution, metabolism, excretion, and toxicity (ADMET) were performed, and a few of them appeared to have potential as candidates for oral administration. Molecular dynamics simulations (MDS) with a time step of up to 100 ns were used to confirm that the three docked complexes were more stable. It was found that the most prevalent and active binding sites that limit Mpro'sactivity are PHE294, ARG298, and GLN110. All retrieved data were compared to conventional antivirals, fumarostelline, strychnidin-10-one (L-1), 2,3-dimethoxy-brucin (L-7), and alkaloid ND-305B (L-16) and were proposed as enhanced SARS-CoV-2 inhibitors. Finally, with additional clinical or necessary study, it may be able to use these indicated natural alkaloids or their analogs as potential therapeutic candidates.

6.
Microorganisms ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677466

RESUMO

Antibiotic resistance is an alarming threat all over the world, and the biofilm formation efficacy of bacteria is making the situation worse. The antagonistic efficacy of Klebsiella pneumoniae against one of the known fish pathogens, Aeromonas sp., is examined in this study. Moreover, Aeromonas sp.'s biofilm formation ability and in vivo pathogenicity on Artemia salina are also justified here. Firstly, six selected bacterial strains were used to obtain antimicrobial compounds against this pathogenic strain. Among those, Klebsiella pneumoniae, another pathogenic bacterium, surprisingly demonstrated remarkable antagonistic activity against Aeromonas sp. in both in vitro and in vivo assays. The biofilm distrusting potentiality of Klebsiella pneumoniae's cell-free supernatants (CFSs) was likewise found to be around 56%. Furthermore, the volatile compounds of Klebsiella pneumoniae were identified by GC-MS in order to explore compounds with antibacterial efficacy against Aeromonas sp. through an in silico study, where 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) (PDB: 5B7P) was chosen as a target protein for its unique characteristics and pathogenicity. Several volatile compounds, such as oxime- methoxy-phenyl-, fluoren-9-ol, 3,6-dimethoxy-9-(2-phenylethynyl)-, and 2H-indol-2-one, 1,3-dihydro- showed a strong binding affinity, with free energy of -6.7, -7.1, and -6.4 Kcal/mol, respectively, in complexes with the protein MTAN. Moreover, the root-mean-square deviation, solvent-accessible surface area, radius of gyration, root-mean-square fluctuations, and hydrogen bonds were used to ensure the binding stability of the docked complexes in the atomistic simulation. Thus, Klebsiella pneumoniae and its potential compounds can be employed as an alternative to antibiotics for aquaculture, demonstrating their effectiveness in suppressing Aeromonas sp.

7.
Microorganisms ; 10(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36363697

RESUMO

Biofilm inhibition has been identified as a novel drug target for the development of broad-spectrum antibiotics to combat infections caused by drug-resistant bacteria. Although several plant-based compounds have been reported to have anti-biofilm properties, research on the anti-biofilm properties of bacterial bioactive compounds has been sparse. In this study, the efficacy of compounds from a cell-free supernatant of Bacillus subtilis against a biofilm formation of Pseudomonas sp. was studied through in vitro, in vivo and in silico studies. Here, in well diffusion method, Bacillus subtilis demonstrated antibacterial activity, and more than 50% biofilm inhibition activity against Pseudomonas sp. was exhibited through in vitro studies. Moreover, molecular docking and molecular dynamics (MD) simulation gave insights into the possible mode of action of the bacterial volatile compounds identified through GC-MS to inhibit the biofilm-formation protein (PDB ID: 7M1M) of Pseudomonas sp. The binding energy revealed from docking studies ranged from -2.3 to -7.0 kcal mol-1. Moreover, 1-(9H-Fluoren-2-yl)-2-(1-phenyl-1H-ttetrazole5-ylsulfanyl)-ethanone was found to be the best-docked compound through ADMET and pharmacokinetic properties. Furthermore, MD simulations further supported the in vitro studies and formed a stable complex with the tested protein. Thus, this study gives an insight into the development of new antibiotics to combat multi-drug-resistant bacteria.

8.
Molecules ; 27(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235073

RESUMO

Honey inhibits bacterial growth due to the high sugar concentration, hydrogen peroxide generation, and proteinaceous compounds present in it. In this study, the antibacterial activity of stingless and sting honey against foodborne pathogenic bacteria isolated from spoiled milk samples was examined. The isolated bacterial strains were confirmed as Bacillus cereus and Listeriamonocytogenes through morphological, biochemical, and 16 s RNA analysis. Physiochemical characterizations of the honey samples revealed that both of the honey samples had an acidic pH, low water content, moderate reducing sugar content, and higher proline content. Through the disc diffusion method, the antibacterial activities of the samples were assayed and better results were observed for the 50 mg/disc honey. Both stingless and sting honey showed the most positive efficacy against Bacillus cereus. Therefore, an in silico study was conducted against this bacterium with some common compounds of honey. From several retrieved constituents of stingless and sting honey, 2,4-dihydroxy-2,5-dimethyl 3(2H)-furan-3-one (furan) and 4H-pyran-4-one,2,3-dihydro of both samples and beta.-D-glucopyranose from the stingless revealed high ligand-protein binding efficiencies for the target protein (6d5z, hemolysin II). The root-mean-square deviation, solvent-accessible surface area, the radius of gyration, root-mean-square fluctuations, and hydrogen bonds were used to ensure the binding stability of the docked complexes in the atomistic simulation and confirmed their stability. The combined effort of wet and dry lab-based work support, to some extent, that the antimicrobial properties of honey have great potential for application in medicine as well as in the food industries.


Assuntos
Anti-Infecciosos , Mel , Antibacterianos/análise , Antibacterianos/farmacologia , Anti-Infecciosos/análise , Bacillus cereus , Furanos , Proteínas Hemolisinas , Mel/análise , Peróxido de Hidrogênio/farmacologia , Ligantes , Testes de Sensibilidade Microbiana , Prolina , Piranos , RNA , Solventes/análise , Açúcares , Água
9.
Front Bioeng Biotechnol ; 10: 810542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223784

RESUMO

The complete hydrolysis of xylan can be facilitated by the coordinated action of xylanase and other de-branching enzymes. Here, a GH43 α-l-arabinofuranosidase/ß-xylosidase (CAX43) from Caldicellulosiruptor saccharolyticus was cloned, sequenced, and biochemically investigated. The interaction of the enzyme with various substrates was also studied. With a half-life of 120 h at 70°C, the produced protein performed maximum activity at pH 6.0 and 70°C. The enzyme demonstrated a higher activity (271.062 ± 4.83 U/mg) against para nitrophenol (pNP) α-L-arabinofuranosides. With xylanase (XynA), the enzyme had a higher degree of synergy (2.30) in a molar ratio of 10:10 (nM). The interaction of the enzyme with three substrates, pNP α-L-arabinofuranosides, pNP ß-D-xylopyranosides, and sugar beet arabinan, was investigated using protein modeling, molecular docking, and molecular dynamics (MD) simulation. During the simulation time, the root mean square deviation (RMSD) of the enzyme was below 2.5 Å, demonstrating structural stability. Six, five, and seven binding-interacting residues were confirmed against pNP α-L-arabinofuranosides, pNP ß-D-xylopyranosides, and arabinan, respectively, in molecular docking experiments. This biochemical and in silico study gives a new window for understanding the GH43 family's structural stability and substrate recognition, potentially leading to biological insights and rational enzyme engineering for a new generation of enzymes that perform better and have greater biorefinery utilization.

10.
Molecules ; 26(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921289

RESUMO

The recent coronavirus disease 2019 (COVID-19) pandemic is a global threat for healthcare management and the economic system, and effective treatments against the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for this disease have not yet progressed beyond the developmental phases. As drug refinement and vaccine progression require enormously broad investments of time, alternative strategies are urgently needed. In this study, we examined phytochemicals extracted from Avicennia officinalis and evaluated their potential effects against the main protease of SARS-CoV-2. The antioxidant activities of A. officinalis leaf and fruit extracts at 150 µg/mL were 95.97% and 92.48%, respectively. Furthermore, both extracts displayed low cytotoxicity levels against Artemia salina. The gas chromatography-mass spectroscopy analysis confirmed the identifies of 75 phytochemicals from both extracts, and four potent compounds, triacontane, hexacosane, methyl linoleate, and methyl palminoleate, had binding free energy values of -6.75, -6.7, -6.3, and -6.3 Kcal/mol, respectively, in complexes with the SARS-CoV-2 main protease. The active residues Cys145, Met165, Glu166, Gln189, and Arg188 in the main protease formed non-bonded interactions with the screened compounds. The root-mean-square difference (RMSD), root-mean-square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond data from a molecular dynamics simulation study confirmed the docked complexes' binding rigidity in the atomistic simulated environment. However, this study's findings require in vitro and in vivo validation to ensure the possible inhibitory effects and pharmacological efficacy of the identified compounds.


Assuntos
Avicennia/química , Tratamento Farmacológico da COVID-19 , Compostos Fitoquímicos/uso terapêutico , SARS-CoV-2/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Avicennia/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Frutas/química , Frutas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Álcool Feniletílico/uso terapêutico , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Fenilpropionatos/uso terapêutico , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , SARS-CoV-2/isolamento & purificação , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
11.
Heliyon ; 7(4): e06650, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33817359

RESUMO

BACKGROUND AND AIM: Outbreak of COVID-19 seems to have exacerbated across the globe, including Bangladesh. Scientific literature on the clinical data record of COVID-19 patients in Bangladesh is inadequate. Our study analyzes the clinical data of COVID-19 positive patients based on molecular identification and risk factor correlated with three variables (age, sex, residence) and COVID-19 prevalence in the four districts of Chattogram Division (Noakhali, Feni, Lakshmipur and Chandpur) with an aim to understand the trajectory of this pandemic in Chattogram, Southern Bangladesh. METHODS: A cross-sectional study is conducted in the context of RT-PCR-based COVID-19 positive 5,589 individuals diagnosed with SARS-CoV-2 infection from the COVID-19 testing laboratory, Abdul Malek Ukil Medical College, Noakhali-3800, Bangladesh. For molecular confirmation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), standard diagnostic protocols through real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) were conducted. Different patient demographics were analyzed using SPSS version 22 for exploring the relationship of three factors - age, sex, and residence with a cumulative number of COVID-19 positive cases and prevalence of COVID-19 in four districts in Chattogram division. The data was recorded between May to July, 2020. RESULTS: Among the three parameters, the present study revealed that 20-40 cohort had the highest incidence of infection rate (51.80%, n = 2895) among the different age groups. Among the infected individuals, 56.8% (n = 3177) were male and 43.2% (n = 2412) were female, denoting males being the most susceptible to this disease. Urban residents (52.7%, n = 2948) were more vulnerable to SARS-CoV-2 infection than those residing in rural areas (47.3%, n = 2641). The prevalence of COVID-19 positive cases among the four districts was recorded highest in the Noakhali district with 36.8% (n = 2057), followed by the Feni, Lakshmipur and Chandpur districts with 25.9% (n = 1448), 20.8% (n = 1163) and 16.5% (n = 921), respectively. CONCLUSIONS: This study presents a statistical correlation of certain factors linked to Bangladesh with confirmed COVID-19 patients, which will enable health practitioners and policy makers to take proactive steps to control and mitigate disease transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA