RESUMO
Background: Temporomandibular disorders (TMD) affect a significant portion of the population, with profound psychological, behavioral, and social repercussions. Recent investigations have explored the genetic basis underlying pain perception in individuals with TMD, aiming to elucidate the role of specific genetic factors in modulating the condition. Notably, genetic variations have been implicated in the pathogenesis of TMD, particularly genes involved in pain perception pathways. One of the primary candidates is the Catechol-O-Methyltransferase (COMT) gene, which plays a crucial role in the catecholaminergic system and has been associated with the regulation of nociceptive processes. This study seeks to investigate the correlation between COMT gene activity and pain perception among South African patients diagnosed with varying forms of TMD. Methodology: In this study, a total of 196 participants were enrolled, comprising 97 patients diagnosed with TMD and 99 control participants. The control group was meticulously matched with the TMD group for age, gender, and ethnicity. Data collection involved clinical and radiological investigations, and saliva sampling. The English version of the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) Axis I was utilized to evaluate all TMD participants, focusing on standard diagnostic measures based on clinical signs and symptoms of TMD, which primarily describe common physical manifestations of the disorder. Genomic DNA was extracted from saliva samples, enabling the analysis of single-nucleotide polymorphisms (SNPs) in the COMT gene, specifically targeting polymorphisms rs165774, rs9332377, rs6269, rs4646310, rs165656, and rs4680. Results: The current study demonstrated a pronounced gender disparity, with 80.41% of the participants being female and 19.59% male, suggesting that women in South Africa either exhibit a higher susceptibility to TMD or are more likely to seek treatment for the condition compared to men. The highest prevalence of TMD was observed in the white population (58.76%). Additionally, over 65% of TMD patients were diagnosed with at least two Axis I diagnoses, a figure that increased to 89% for those diagnosed with three Axis I diagnoses. The findings further indicated significant associations between several single-nucleotide polymorphisms (SNPs) in the Catechol-O-Methyltransferase (COMT) gene-specifically rs165656, rs9332377, rs4646310, rs6269, and rs165774-and both TMD and TMD-related pain. Myofascial pain with referral and myalgia showed a strong association with the COMT SNPs rs9332377 and rs4646310. Furthermore, COMT SNP rs4646310 was also associated with disability related to TMD. Conclusions: This study substantiates the hypothesis that pain is prevalent in a considerable proportion of patients affected by TMD. Furthermore, the findings reveal a significant association between COMT gene activity and pain perception in South African patients diagnosed with TMD.
RESUMO
BACKGROUND: Root canal failure and secondary endodontic infection are frequent clinical scenarios in dentistry. The main microorganisms implicated in root canal therapy failure are persistent Enterococcus faecalis, Candida albicans, and Staphylococcus aureus. To combat the impact of disease resistance, scientists are concentrating on alternative antimicrobial root canal sealers. Nanomaterials are a recent development in endodontic materials that exhibit great antimicrobial properties, making them an ideal material choice for root canal sealers. OBJECTIVE: This systematic review aims to compare the antimicrobial properties of conventional root canal sealers to those incorporating green synthesized nanoparticles between 2010 and 2024. METHODS: A well-constructed protocol was established and registered with PROSPERO (CRD42021286373). Ethics approval was obtained from the Biomedical Research and Ethics Committee from the University of the Western Cape (UWC; BM22/1/4). PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols) reporting guidelines were followed. The included criteria demonstrate the green synthesized nanoparticles studies where the nanoparticles (NPs) are incorporated in root canal sealers. MeSH (Medical Subject Headings) terms were used for the search strategy of the systematic electronic databases for articles published in English between 2010 and 2024. The selected databases included Scopus, PubMed, Web of Science, Science Direct, EBSCOhost, SpringerLink, and Wiley Online. A quality assessment tool for laboratory studies will be used to critically appraise the included studies. If applicable, statistical measures (mean, SD, etc) will be used for data analysis and presentation of the results. RESULTS: The protocol is registered with PROSPERO. A preliminary search was conducted using a determined search strategy across 8 electronic databases, and the review is now complete. CONCLUSIONS: It is anticipated that the results of this systematic review may reveal the increased interest and application for nanoparticle-enhanced root canal sealers. This will aid in the future development of root canal sealants and mitigate the risk of endodontic failure. TRIAL REGISTRATION: PROSPERO CRD42021286373; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=286373. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51351.
Assuntos
Anti-Infecciosos , Nanopartículas , Materiais Restauradores do Canal Radicular , Materiais Restauradores do Canal Radicular/química , Materiais Restauradores do Canal Radicular/farmacologia , Humanos , Nanopartículas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Revisões Sistemáticas como Assunto , Química Verde/métodosRESUMO
A comparative study was applied to investigate the potential of Callistemon citrinus (bottlebrush) flower extract (BBE) and Punica granatum (pomegranate) peel extracts (PPE) for the sustainable synthesis of the silver nanoparticles, Ag-BBE and Ag-PPE, respectively. The synthesis process of Ag NPs using the selected extracts was applied under optimized conditions. Hence, the effect of the selected plant's type on the different characteristics of the synthesized green Ag NPs was investigated. The UV-Vis spectroscopy revealed the presence of the characteristic silver peaks at 419 and 433 nm of the Ag-BBE and Ag-PPE, respectively. The XRD spectra reported the fcc phase formation of Ag NPs. The TEM results highlighted the morphological features of the synthesized Ag NPs. with a size range of 20-70 nm, and with 10-30 nm for Ag-BBE and Ag-PPE, correspondingly. The Raman spectra revealed characteristic silver bands in the Ag-PPE and reflected some bands related to the natural extract in the Ag-BBE sample. The antimicrobial activity and statistical analysis investigation were conducted against four selected oral pathogens (Staphylococcus aureus (SA), Candida albicans (CA), Staphylococcus epidermidis (S. epi), and Enterococcus faecalis (EF)). Both tested extracts, BBE, and PPE, revealed potential effectivity as reducing and capping agents for Ag NP green synthesis. However, the synthesized NPs demonstrated different features, depending on the used extract, reflecting the influence of the plant's biomolecules on the nanoparticles' properties.
RESUMO
In this study, we report the successful synthesis of a phenol-formaldehyde-pyrazole (PF-PYZ) compound through the surface functionalization of phenol-formaldehyde (PF) with pyrazole (PYZ). The resulting mixture was subjected to comprehensive characterization using a range of analytical techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The newly synthesized PF-PYZ material effectively removes Cr(VI) ions. Notably, a substantial elimination efficiency of 96% was achieved after just 60 min of contact time. The strategic incorporation of pyrazole (PYZ) as the principal functionalizing agent contributed to this exceptional performance. Notably, the functionalized PYZ sites were strategically positioned on the surface of PF, rendering them readily accessible to metal ions. Through rigorous testing, the optimal sorption capacity of PF-PYZ for Cr(VI) ions was quantified at 0.872 mmol Cr(VI)/g, highlighting the material's superior adsorption capabilities. The practical utility of PF-PYZ was further established through a reusability test, which demonstrated that the chromate capacity remained remarkably stable at 0.724 mequiv Cr(VI)/g over 20 consecutive cycles. This resilience underscores the robustness of the resin, indicating its potential for repeated regeneration and reuse without a significant capacity loss. Our work presents a novel approach to functionalizing phenol-formaldehyde with pyrazole, creating PF-PYZ, a highly efficient material for removing Cr(VI) ions. The compound's facile synthesis, exceptional removal performance, and excellent reusability collectively underscore its promising potential for various water treatments, especially oil field and environmental remediation applications.
RESUMO
Fungal infections caused by Candida albicans (C. albicans) are one of the most prevalent types of oral disorders in the elderly. It has been reported that drug resistance to fungal pathogens poses a severe risk to global healthcare systems and public health. Therefore, the goal of this work is to investigate the cytotoxic and antifungal properties of silver nanoparticles (AgNPs) produced using three different natural extracts: Berzelia lanuginose, Helichrysum cymosum, and Searsia crenata. According to the UV-Vis results, the synthesized AgNPs via B. lanuginose, H. cymosum, and S. crenata show surface plasmonic resonance (SPR) peaks at 430, 440, and 428 nm, respectively. HR-TEM revealed different shapes for the nanoparticles within the size ranges of 16-20, 31-60, and 57-72 nm for B. lanuginose, H. cymosum, and S. crenata, respectively. Using a human oral fibroblast cell line, the cytotoxicity of both AgNPs and plant extracts was tested at concentrations of 0.007, 0.012, 0.025, and 0.062 mg/mL (buccal mucosa fibroblasts). The antifungal activity showed growth inhibition zones of approximately 18 mm, 18.67 mm, and 18.33 mm for the AgNPs conjugated with B. lanuginose, H. cymosum, and S. crenata, respectively. For the studied samples, the minimum inhibitory concentration (MIC50) was less than 0.015 mg/mL. The AgNPs exhibited antifungal activity that was concentration- and size-dependent. The results of this study offer new insights into the cytotoxicity and antifungal activity of the green-synthesized AgNPs.
RESUMO
Three-dimensional (3D) scaffolds are attracting great concern for bone tissue engineering applications. However, selecting an appropriate material with optimal physical, chemical, and mechanical properties is considered a great challenge. The green synthesis approach is essential to avoid the production of harmful by-products through textured construction, sustainable, and eco-friendly procedures. This work aimed at the implementation of natural green synthesized metallic nanoparticles for the development of composite scaffolds for dental applications. In this study, innovative hybrid scaffolds of polyvinyl alcohol/alginate (PVA/Alg) composite loaded with various concentrations of green palladium nanoparticles (Pd NPs) have been synthesized. Various characteristic analysis techniques were used to investigate the synthesized composite scaffold's properties. The SEM analysis revealed impressive microstructure of the synthesized scaffolds dependent on the Pd NPs concentration. The results confirmed the positive effect of Pd NPs doping on the sample stability over time. The synthesized scaffolds were characterized by the oriented lamellar porous structure. The results confirmed the shape stability, without pores breakdown during the drying process. The XRD analysis confirmed that doping with Pd NPs does not affect the crystallinity degree of the PVA/Alg hybrid scaffolds. The mechanical properties results (up to 50 MPa) confirmed the remarkable effect of Pd NPs doping and its concentration on the developed scaffolds. The MTT assay results showed that the incorporation of Pd NPs into the nanocomposite scaffolds is necessary for increasing cell viability. According to the SEM results, the scaffolds with Pd NPs provided the differentiated grown osteoblast cells with enough mechanical support and stability and the cells had a regular form and were highly dense. In conclusion, the synthesized composite scaffolds expressed suitable biodegradable, osteoconductive properties, and the ability to construct 3D structures for bone regeneration, making them a potential option for treating critical deficiencies of bone.
Assuntos
Nanopartículas Metálicas , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Alginatos/química , Álcool de Polivinil/química , Paládio , Polpa Dentária , Engenharia Tecidual/métodos , Osteoblastos , Células-TroncoRESUMO
Fabrication of scaffolds for nerve regeneration is one of the most challenging topics in regenerative medicine at the moment, which is also interlinked with the development of biocompatible substrates for cells growth. This work is targeted towards the development of green biomaterial composite scaffolds for nerve cell culture applications. Hybrid scaffolds of hydroxyethyl cellulose/glycine (HEC/Gly) composite doped with different concentrations of green ruthenium oxide (RuO2) were synthesized and characterized via a combination of different techniques. X-rays diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed a crystalline nature for all the samples with noticeable decrease in the peak intensity of the fabricated scaffolds as compared to that for pure glycine. Fourier transform infrared spectroscopy (FTIR) tests revealed an increase in the vibrational bands of the synthesized RuO2 containing scaffolds which are related to the functional groups of the natural plant extract (Aspalathuslinearis) used for RuO2 nanoparticles (NPs) synthesis. Scanning electron microscopy (SEM) results revealed a 3D porous structure of the scaffolds with variant features attributed to the concentration of RuO2 NPs in the scaffold. The compressive test results recorded an enhancement in mechanical properties of the fabricated scaffolds (up to 8.55 MPa), proportionally correlated to increasing the RuO2 NPs concentration in HEC/Gly composite scaffold. Our biocompatibility tests revealed that the composite scaffolds doped with 1 and 2 ml of RuO2 demonstrated the highest proliferation percentages (152.2 and 135.6%) compared to control. Finally, the SEM analyses confirmed the impressive cells attachments and differentiation onto the scaffold surfaces as evidenced by the presence of many neuron-like cells with apparent cell bodies and possessing few short neurite-like processes. The presence of RuO2 and glycine was due to their extraordinary biocompatibility due to their cytoprotective and regenerative effects. Therefore, we conclude that these scaffolds are promising for accommodation and growth of neural-like cells.
Assuntos
Glicina , Compostos de Rutênio/química , Alicerces Teciduais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Celulose/química , Celulose/farmacologia , Glicina/farmacologia , Neurônios , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Alicerces Teciduais/químicaRESUMO
The reducing potential of plant extracts in the green synthesis of nanoparticles has been associated with their phytochemicals. Although pharmacologically inactive, a norlignan diglucoside "hypoxoside" (HP) occurs in large quantities in the extract of Hypoxis hemerocallidea (HE). In this work, HP was isolated from HE where both were used in the biosynthesis of the corresponding silver nanoparticles (HP-AgNPs and HE-AgNPs). The AgNPs were fully characterized using various physicochemical techniques and their antimicrobial and anticancer properties were evaluated. Transmission electron microscopy (TEM) revealed sizes of 24.3 ± 4 nm for the HE-AgNPs and 3.9 ± 1.6 nm for the HP-AgNPs. The HE-AgNPs demonstrated enhanced anti-bactericidal effects on Escherichia coli and Salmonella enterica with a minimum inhibitory concentration (MIC) value of 1.95 µg/mL, competing well with the standard drug. The cytotoxic activity showed that the HE-AgNPs reduced cell viability with an IC50 of 0.81 and 4.0 µg/mL, respectively, for the U87 and U251 cells, while the HP-AgNPs displayed 0.20 and 0.55 µg/mL for both cell lines, respectively. Furthermore, while the HE-AgNPs were selective to U87 alone, the HP-AgNPs were selective to both glioblastoma cells tested. The study demonstrated the ability of a single phytoconstituent (hypoxoside), not only as the chief bioreductant in the extract, but also as a standalone reducing and capping agent, producing ultra-small, spherical, and monodispersed AgNPs with enhanced biological properties.
RESUMO
In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2-7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.
RESUMO
In this study, procyanidins fractions of dimers and trimers (F1-F2) from the Leucosidea sericea total extract (LSTE) were investigated for their chemical constituents. The total extract and the procyanidins were employed in the synthesis of gold nanoparticles (Au NPs) and fully characterized. Au NPs of 6, 24 and 21 nm were obtained using LSTE, F1 and F2 respectively. Zeta potential and in vitro stability studies confirmed the stability of the particles. The enzymatic activity of LSTE, F1, F2 and their corresponding Au NPs showed strong inhibitory alpha-amylase activity where F1 Au NPs demonstrated the highest with IC50 of 1.88 µg/mL. On the other hand, F2 Au NPs displayed the strongest alpha-glucosidase activity at 4.5 µg/mL. F2 and F2 Au NPs also demonstrated the highest antioxidant activity, 1834.0 ± 4.7 µM AAE/g and 1521.9 ± 3.0 µM TE/g respectively. The study revealed not only the ability of procyanidins dimers (F1 and F2) in forming biostable and bioactive Au NPs but also, a significant enhancement of the natural products activities, which could improve the smart delivery in future biomedical applications.
Assuntos
Antioxidantes/química , Biflavonoides/química , Catequina/química , Ouro/química , Química Verde , Hipoglicemiantes , Extratos Vegetais/química , Proantocianidinas/química , Rosaceae/química , Hipoglicemiantes/síntese química , Hipoglicemiantes/químicaRESUMO
Background Venous thromboembolism is the most common preventable cause of hospital death. Despite that, there is still a large gap between what we know about venous thromboembolism prophylaxis and what is happening in current practice. Objective To evaluate VTE prophylaxis in Al-Basheer hospital and assess the extent of agreement of physicians' practice with the guidelines. Setting Al-Basheer governmental hospital in Jordan between January 2016 and June 2016. Method In this cross-sectional observational study, patients were randomly selected from medical and surgical wards. The need for venous thromboembolism prophylaxis was assessed according to the American College of Chest Physicians guideline (9th edition) for men and non-pregnant women, and the Royal College of Obstetricians and Gynecologists guidelines for pregnant women. MAIN OUTCOME MEASURE: rate of agreement of venous thromboembolism prophylaxis with the guidelines. Results The total number of patients was 1030, Patients in the medical wards constituted most of the participants. The rate of concordance with the guidelines was 718/1030 (69.7%) in the total number of patients When the patients were divided into groups: those that required venous thromboembolism prophylaxis and those that did not, the rate of agreement with guidelines in the subgroup that needed prophylaxis 160/456 (35.1%) was lower than the rate in the subgroup that did not need prophylaxis 558/574 (97.2%), p value <0.001. Conclusion venous thromboembolism prophylaxis in Al-Basheer hospital is not appropriate and underused, this might be attributed to the absence of an institutional guideline.
Assuntos
Países em Desenvolvimento , Profilaxia Pré-Exposição/normas , Centros de Atenção Terciária/normas , Tromboembolia Venosa/prevenção & controle , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Países em Desenvolvimento/economia , Feminino , Humanos , Jordânia/epidemiologia , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto/normas , Profilaxia Pré-Exposição/economia , Centros de Atenção Terciária/economia , Tromboembolia Venosa/economia , Tromboembolia Venosa/epidemiologia , Adulto JovemRESUMO
INTRODUCTION: Psoriasis arthritis (PsA) is a chronic inflammatory arthritis of joints of uncertain pathogenesis. PsA may lead to severe disabilities even in the absence of any clinical symptom. Therefore, PsA diagnosis in its early stages is critical. MATERIAL AND METHODS: This study uses Control System theory to model finger skin thermoregulatory processes overlying the hand joint in response to an isometric exercise. The proposed model is based on a homeostatic negative feedback loop characterized by four distinct parameters that describe how the control mechanisms are activated and maintained. Thermal infrared imaging was used to record a total of 280 temperature curves of 14 finger joints for each of 11 PsA patients and 9 healthy controls. RESULT AND CONCLUSION: PsA patients presented delayed and prolonged re-warming processes characterized by the undershoot onset after the end of the isometric exercise followed by a faster temperature increase. Region classification on the basis of the model parameters demonstrated that the interphalageal joint region of thumb better discriminates between patients and controls, providing 100% true-positive discrimination for PsA affected regions and 88.89% of correct classification of healthy regions. Even proved over a limited number of subjects, the proposed method may provide useful hints for early differential diagnosis in the IR assessment of PsA disease.
Assuntos
Artrite Psoriásica/diagnóstico , Artrite Psoriásica/fisiopatologia , Regulação da Temperatura Corporal , Modelos Biológicos , Estudos de Casos e Controles , Diagnóstico Diferencial , Exercício Físico , Feminino , Dedos , Articulação da Mão/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Pele/fisiopatologiaRESUMO
Varicocele is a common male disease defined as the pathological dilatation of the pampiniform plexus and scrotal veins with venous blood reflux. Varicocele usually impairs the scrotal thermoregulation via a hemodynamic alteration, thus inducing an increase in cutaneous temperature. The investigation of altered scrotal thermoregulation by means of thermal infrared imaging has been proved to be useful in the study of the functional thermal impairment. In this study, we use the Control System Theory to analyze the time-domain dynamics of the scrotal thermoregulation in response to a mild cold challenge. Four standard time-domain dynamic parameters of a prototype second order control system (Delay Time, Rise Time, closed poles locations, steady state error) and the static basal temperatures were directly estimated from thermal recovery curves. Thermal infrared imaging data from 31 healthy controls (HCS) and 95 varicocele patients were processed. True-positive predictions, by comparison with standard echo color Doppler findings, higher than 87% were achieved into the proper classification of the disease stage. The proposed approach could help to understand at which specific level the presence of the disease impacts the scrotal thermoregulation, which is also involved into normal spermatogenesis process.