Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214449

RESUMO

In industrial paper production, online monitoring of a range of quality parameters is essential for ensuring that the performance and appearance of the final product is suitable for a given application. In this article, two optical sensing techniques are investigated for non-destructive, non-contact characterization of paper thickness, surface roughness, and production defects. The first technique is optical coherence tomography based on a mid-infrared supercontinuum laser, which can cover thicknesses from ~20-90 µm and provide information about the surface finish. Detection of subsurface voids, cuts, and oil contamination was also demonstrated. The second technique is terahertz time domain spectroscopy, which is used to measure paper thicknesses of up to 443 µm. A proof-of-concept thickness measurement in freely suspended paper was also demonstrated. These demonstrations highlight the added functionality and potential of tomographic optical sensing methods towards industrial non-contact quality monitoring.


Assuntos
Espectroscopia Terahertz , Tomografia de Coerência Óptica , Análise Espectral , Tomografia de Coerência Óptica/métodos
2.
Acta Derm Venereol ; 102: adv00634, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34806755

RESUMO

Rapid diagnosis of suspicious pigmented skin lesions is imperative; however, current bedside skin imaging technologies are either limited in penetration depth or resolution. Combining imaging methods is therefore highly relevant for skin cancer diagnostics. This pilot study evaluated the ability of optical coherence tomography, reflectance confocal microscopy, photo-acoustic imaging and high-frequency ultrasound to differentiate malignant from benign pigmented skin lesions. A total of 41 pigmented skin tumours were scanned prior to excision. Morphological features and blood vessel characteristics were analysed with reflectance confocal microscopy, optical coherence tomography, high-frequency ultrasound and photoacoustic imaging images, and the diagnostic accuracy was assessed. Three novel photoacoustic imaging features, 7 reflectance confocal microscopy features, and 2 optical coherence tomography features were detected that had a high correlation with malignancy; diagnostic accuracy > 71%. No significant features were found in high-frequency ultrasound. In conclusion, optical coherence tomography, reflectance confocal microscopy and photoacoustic imaging in combination enable image-guided bedside evaluation of suspicious pigmented skin tumours. Combining these advanced techniques may enable more efficient diagnosis of skin cancer.


Assuntos
Neoplasias Cutâneas , Humanos , Microscopia Confocal , Projetos Piloto , Pele , Neoplasias Cutâneas/diagnóstico por imagem , Tomografia de Coerência Óptica
3.
Light Sci Appl ; 10(1): 133, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183643

RESUMO

We present the first demonstration of shot-noise limited supercontinuum-based spectral domain optical coherence tomography (SD-OCT) with an axial resolution of 5.9 µm at a center wavelength of 1370 nm. Current supercontinuum-based SD-OCT systems cannot be operated in the shot-noise limited detection regime because of severe pulse-to-pulse relative intensity noise of the supercontinuum source. To overcome this disadvantage, we have developed a low-noise supercontinuum source based on an all-normal dispersion (ANDi) fiber, pumped by a femtosecond laser. The noise performance of our 90 MHz ANDi fiber-based supercontinuum source is compared to that of two commercial sources operating at 80 and 320 MHz repetition rate. We show that the low-noise of the ANDi fiber-based supercontinuum source improves the OCT images significantly in terms of both higher contrast, better sensitivity, and improved penetration. From SD-OCT imaging of skin, retina, and multilayer stacks we conclude that supercontinuum-based SD-OCT can enter the domain of shot-noise limited detection.

4.
Sci Rep ; 8(1): 15445, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337645

RESUMO

This work evaluates the performance of the Complex Master Slave (CMS) method, that processes the spectra at the interferometer output of a spectral domain interferometry device without involving Fourier transforms (FT) after data acquisition. Reliability and performance of CMS are compared side by side with the conventional method based on FT, phase calibration with dispersion compensation (PCDC). We demonstrate that both methods provide similar results in terms of resolution and sensitivity drop-off. The mathematical operations required to produce CMS results are highly parallelizable, allowing real-time, simultaneous delivery of data from several points of different optical path differences in the interferometer, not possible via PCDC.

5.
Sci Rep ; 8(1): 9170, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907767

RESUMO

In ultra-high resolution (UHR-) optical coherence tomography (OCT) group velocity dispersion (GVD) must be corrected for in order to approach the theoretical resolution limit. One approach promises not only compensation, but complete annihilation of even order dispersion effects, and that at all sample depths. This approach has hitherto been demonstrated with an experimentally demanding 'balanced detection' configuration based on using two detectors. We demonstrate intensity correlation (IC) OCT using a conventional spectral domain (SD) UHR-OCT system with a single detector. IC-SD-OCT configurations exhibit cross term ghost images and a reduced axial range, half of that of conventional SD-OCT. We demonstrate that both shortcomings can be removed by applying a generic artefact reduction algorithm and using analytic interferograms. We show the superiority of IC-SD-OCT compared to conventional SD-OCT by showing how IC-SD-OCT is able to image spatial structures behind a strongly dispersive silicon wafer. Finally, we question the resolution enhancement of [Formula: see text] that IC-SD-OCT is often believed to have compared to SD-OCT. We show that this is simply the effect of squaring the reflectivity profile as a natural result of processing the product of two intensity spectra instead of a single spectrum.

6.
Biomed Opt Express ; 9(5): 2240-2265, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760984

RESUMO

Optical coherence tomography (OCT) imaging of the skin is gaining recognition and is increasingly applied to dermatological research. A key dermatological parameter inferred from an OCT image is the epidermal (Ep) thickness as a thickened Ep can be an indicator of a skin disease. Agreement in the literature on the signal characters of Ep and the subjacent skin layer, the dermis (D), is evident. Ambiguities of the OCT signal interpretation in the literature is however seen for the transition region between the Ep and D, which from histology is known as the dermo-epidermal junction (DEJ); a distinct junction comprised of the lower surface of a single cell layer in epidermis (the stratum basale) connected to an even thinner membrane (the basement membrane). The basement membrane is attached to the underlying dermis. In this work we investigate the impact of an improved axial and lateral resolution on the applicability of OCT for imaging of the skin. To this goal, OCT images are compared produced by a commercial OCT system (Vivosight from Michaelson Diagnostics) and by an in-house built ultrahigh resolution (UHR-) OCT system for dermatology. In 11 healthy volunteers, we investigate the DEJ signal characteristics. We perform a detailed analysis of the dark (low) signal band clearly seen for UHR-OCT in the DEJ region where we, by using a transition function, find the signal transition of axial sub-resolution character, which can be directly attributed to the exact location of DEJ, both in normal (thin/hairy) and glabrous (thick) skin. To our knowledge no detailed delineating of the DEJ in the UHR-OCT image has previously been reported, despite many publications within this field. For selected healthy volunteers, we investigate the dermal papillae and the vellus hairs and identify distinct features that only UHR-OCT can resolve. Differences are seen in tracing hairs of diameter below 20 µm, and in imaging the dermal papillae where, when utilising the UHR-OCT, capillary structures are identified in the hand palm, not previously reported in OCT studies and specifically for glabrous skin not reported in any other in vivo optical imaging studies.

7.
Biomed Opt Express ; 8(2): 813-827, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270987

RESUMO

This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright parts of A-scans for each focus position, to be placed in a final B-scan image (or in a final volume), and discarding the rest, the MS principle can be employed to advantageously deliver signal from the depths within each focus range only. The MS procedure is illustrated on creating volumes of data of constant transversal resolution from a cucumber and from an insect by repeating data acquisition for 4 different focus positions. In addition, advantage is taken from the tolerance to dispersion of the MS principle that allows automatic compensation for dispersion created by layers above the object of interest. By combining the two techniques, Gabor filtering and Master/Slave, a powerful imaging instrument is demonstrated. The master/slave technique allows simultaneous display of three categories of images in one frame: multiple depth en-face OCT images, two cross-sectional OCT images and a confocal like image obtained by averaging the en-face ones. We also demonstrate the superiority of MS-OCT over its FFT based counterpart when used with a Gabor filtering OCT instrument in terms of the speed of assembling the fused volume. For our case, we show that when more than 4 focus positions are required to produce the final volume, MS is faster than the conventional FFT based procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA