Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Virus Evol ; 7(2): veab072, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36819970

RESUMO

To investigate the spread of Rice yellow mottle virus (RYMV) along the Niger River, regular sampling of virus isolates was conducted along 500 km of the Niger Valley in the Republic of Niger and was complemented by additional sampling in neighbouring countries in West Africa and Central Africa. The spread of RYMV into and within the Republic of Niger was inferred as a continuous process using a Bayesian statistical framework applied previously to reconstruct its dispersal history in West Africa, East Africa, and Madagascar. The spatial resolution along this section of the Niger River was the highest implemented for RYMV and possibly for any plant virus. We benefited from the results of early field surveys of the disease for the validation of the phylogeographic reconstruction and from the well-documented history of rice cultivation changes along the Niger River for their interpretation. As a prerequisite, the temporal signal of the RYMV data sets was revisited in the light of recent methodological advances. The role of the hydrographic network of the Niger Basin in RYMV spread was examined, and the link between virus population dynamics and the extent of irrigated rice was assessed. RYMV was introduced along the Niger River in the Republic of Niger in the early 1980s from areas to the southwest of the country where rice was increasingly grown. Viral spread was triggered by a major irrigation scheme made of a set of rice perimeters along the river valley. The subsequent spatial and temporal host continuity and the inoculum build-up allowed for a rapid spread of RYMV along the Niger River, upstream and downstream, over hundreds of kilometres, and led to the development of severe epidemics. There was no evidence of long-distance dissemination of the virus through natural water. Floating rice in the main meanders of the Middle Niger did not contribute to virus dispersal from West Africa to Central Africa. RYMV along the Niger River is an insightful example of how agricultural intensification favours pathogen emergence and spread.

2.
Phytopathology ; 108(2): 299-307, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28990483

RESUMO

Rice yellow mottle virus (RYMV) causes high losses to rice production in Africa. Several sources of varietal high resistance are available but the emergence of virulent pathotypes that are able to overcome one or two resistance alleles can sometimes occur. Both resistance spectra and viral adaptability have to be taken into account to develop sustainable rice breeding strategies against RYMV. In this study, we extended previous resistance spectrum analyses by testing the rymv1-4 and rymv1-5 alleles that are carried by the rice accessions Tog5438 and Tog5674, respectively, against isolates that are representative of RYMV genetic and pathogenic diversity. Our study revealed a hypervirulent pathotype, named thereafter pathotype T', that is able to overcome all known sources of high resistance. This pathotype, which is spatially localized in West-Central Africa, appears to be more abundant than previously suspected. To better understand the adaptive processes of pathotype T', molecular determinants of resistance breakdown were identified via Sanger sequencing and validated through directed mutagenesis of an infectious clone. These analyses confirmed the key role of convergent nonsynonymous substitutions in the central part of the viral genome-linked protein to overcome RYMV1-mediated resistance. In addition, deep-sequencing analyses revealed that resistance breakdown does not always coincide with fixed mutations. Actually, virulence mutations that are present in a small proportion of the virus population can be sufficient for resistance breakdown. Considering the spatial distribution of RYMV strains in Africa and their ability to overcome the RYMV resistance genes and alleles, we established a resistance-breaking risk map to optimize strategies for the deployment of sustainable and resistant rice lines in Africa.


Assuntos
Variação Genética , Genoma Viral/genética , Oryza/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Proteínas Virais/genética , África Central , Alelos , Resistência à Doença , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/genética , Oryza/imunologia , Doenças das Plantas/imunologia , Vírus de Plantas/patogenicidade , Análise de Sequência de DNA , Virulência
3.
Theor Appl Genet ; 130(4): 807-818, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28144699

RESUMO

KEY MESSAGE: A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene. Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Oryza/genética , Doenças das Plantas/genética , Vírus de Plantas , Mapeamento Cromossômico , Marcadores Genéticos , Fenótipo , Doenças das Plantas/virologia , Vírus de RNA
4.
Virus Res ; 195: 64-72, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25245592

RESUMO

Epidemics of rice yellow mottle virus (RYMV) have developed recently in eastern Uganda, close to Lake Victoria in East Africa. Unexpectedly, all isolates from the affected area belonged to a single strain (named S4ug), a strain that is different from the S4lv strain that has been prevalent in the Lake Victoria basin for the past five decades. Interestingly, the S4ug strain is most closely related at the genomic level (except ORF1) to the strain present in Madagascar (S4mg), 2000km away. The minor parent of the S4mg recombinant strain could not be detected. Molecular clock dating analysis indicated that the singular sequence of events - that associated the emergence of a new strain (S4ug), a modular recombination between closely related strains (S4mg and S4ug) and a long distance transmission (S4mg) - occurred recently, within the past few decades. This finding is at variance with the process of gradual strain dispersal and diversification over two centuries throughout Africa that was previously established.


Assuntos
Oryza/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Análise por Conglomerados , Evolução Molecular , Lagos , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/genética , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência , Uganda
5.
Virology ; 408(1): 103-8, 2010 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-20888025

RESUMO

The rymv1-3 allele of the eIF(iso)4G-mediated resistance to Rice yellow mottle virus (RYMV) is found in a few Oryza glaberrima cultivars. The same resistance-breaking (RB) mutations emerged in the central domain of the VPg after inoculation of isolates of different strains. The RB mutations were fixed, often sequentially, at codons 41 and 52 which paralleled an increase in virus accumulation. RB mutations also emerged after inoculation of an avirulent infectious clone, indicating that they were generated de novo in resistant plants. Only virus isolates with a threonine at codon 49 of the VPg broke rymv1-3 resistance, those with a glutamic acid did not. A small subset of these isolates overcame rymv1-2 resistance, but following a specific pathway. Comparison with the RB process of rymv1-2, a resistance allele found in a few Oryza sativa cultivars, showed similarities in the mode of adaptation but revealed converse virulence specificity of the isolates.


Assuntos
Fator de Iniciação Eucariótico 4G/metabolismo , Oryza/imunologia , Oryza/virologia , Vírus de Plantas/crescimento & desenvolvimento , Vírus de Plantas/imunologia , Vírus de RNA/crescimento & desenvolvimento , Vírus de RNA/imunologia , Adaptação Biológica , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Evolução Biológica , Análise por Conglomerados , Códon , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Vírus de RNA/patogenicidade , Homologia de Sequência , Proteínas Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA