Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Med ; 29(12): 3111-3119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946058

RESUMO

Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1-2 persons are expected to develop a hematological malignancy attributable to radiation exposure in the subsequent 12 years. Our results strengthen the body of evidence of increased cancer risk at low radiation doses and highlight the need for continued justification of pediatric CT examinations and optimization of doses.


Assuntos
Neoplasias Hematológicas , Neoplasias Induzidas por Radiação , Exposição à Radiação , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Doses de Radiação , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/etiologia , Exposição à Radiação/efeitos adversos , Tomografia Computadorizada por Raios X/efeitos adversos
2.
Lancet Oncol ; 24(1): 45-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493793

RESUMO

BACKGROUND: The European EPI-CT study aims to quantify cancer risks from CT examinations of children and young adults. Here, we assess the risk of brain cancer. METHODS: We pooled data from nine European countries for this cohort study. Eligible participants had at least one CT examination before age 22 years documented between 1977 and 2014, had no previous diagnosis of cancer or benign brain tumour, and were alive and cancer-free at least 5 years after the first CT. Participants were identified through the Radiology Information System in 276 hospitals. Participants were linked with national or regional registries of cancer and vital status, and eligible cases were patients with brain cancers according to WHO International Classification of Diseases for Oncology. Gliomas were analysed separately to all brain cancers. Organ doses were reconstructed using historical machine settings and a large sample of CT images. Excess relative risks (ERRs) of brain cancer per 100 mGy of cumulative brain dose were calculated with linear dose-response modelling. The outcome was the first reported diagnosis of brain cancer after an exclusion period of 5 years after the first electronically recorded CT examination. FINDINGS: We identified 948 174 individuals, of whom 658 752 (69%) were eligible for our study. 368 721 (56%) of 658 752 participants were male and 290 031 (44%) were female. During a median follow-up of 5·6 years (IQR 2·4-10·1), 165 brain cancers occurred, including 121 (73%) gliomas. Mean cumulative brain dose, lagged by 5 years, was 47·4 mGy (SD 60·9) among all individuals and 76·0 mGy (100·1) among people with brain cancer. A significant linear dose-response relationship was observed for all brain cancers (ERR per 100 mGy 1·27 [95% CI 0·51-2·69]) and for gliomas separately (ERR per 100 mGy 1·11 [0·36-2·59]). Results were robust when the start of follow-up was delayed beyond 5 years and when participants with possibly previously unreported cancers were excluded. INTERPRETATION: The observed significant dose-response relationship between CT-related radiation exposure and brain cancer in this large, multicentre study with individual dose evaluation emphasises careful justification of paediatric CTs and use of doses as low as reasonably possible. FUNDING: EU FP7; Belgian Cancer Registry; La Ligue contre le Cancer, L'Institut National du Cancer, France; Ministry of Health, Labour and Welfare of Japan; German Federal Ministry of Education and Research; Worldwide Cancer Research; Dutch Cancer Society; Research Council of Norway; Consejo de Seguridad Nuclear, Generalitat de Catalunya, Spain; US National Cancer Institute; UK National Institute for Health Research; Public Health England.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Induzidas por Radiação , Exposição à Radiação , Criança , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Estudos de Coortes , Doses de Radiação , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/etiologia , Glioma/diagnóstico por imagem , Glioma/epidemiologia , Glioma/etiologia , Exposição à Radiação/efeitos adversos , Tomografia Computadorizada por Raios X/efeitos adversos , Tomografia Computadorizada por Raios X/métodos
3.
Radiat Res ; 196(1): 74-99, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914893

RESUMO

Within the European Epidemiological Study to Quantify Risks for Paediatric Computerized Tomography (EPI-CT study), a cohort was assembled comprising nearly one million children, adolescents and young adults who received over 1.4 million computed tomography (CT) examinations before 22 years of age in nine European countries from the late 1970s to 2014. Here we describe the methods used for, and the results of, organ dose estimations from CT scanning for the EPI-CT cohort members. Data on CT machine settings were obtained from national surveys, questionnaire data, and the Digital Imaging and Communications in Medicine (DICOM) headers of 437,249 individual CT scans. Exposure characteristics were reconstructed for patients within specific age groups who received scans of the same body region, based on categories of machines with common technology used over the time period in each of the 276 participating hospitals. A carefully designed method for assessing uncertainty combined with the National Cancer Institute Dosimetry System for CT (NCICT, a CT organ dose calculator), was employed to estimate absorbed dose to individual organs for each CT scan received. The two-dimensional Monte Carlo sampling method, which maintains a separation of shared and unshared error, allowed us to characterize uncertainty both on individual doses as well as for the entire cohort dose distribution. Provided here are summaries of estimated doses from CT imaging per scan and per examination, as well as the overall distribution of estimated doses in the cohort. Doses are provided for five selected tissues (active bone marrow, brain, eye lens, thyroid and female breasts), by body region (i.e., head, chest, abdomen/pelvis), patient age, and time period (1977-1990, 1991-2000, 2001-2014). Relatively high doses were received by the brain from head CTs in the early 1990s, with individual mean doses (mean of 200 simulated values) of up to 66 mGy per scan. Optimization strategies implemented since the late 1990s have resulted in an overall decrease in doses over time, especially at young ages. In chest CTs, active bone marrow doses dropped from over 15 mGy prior to 1991 to approximately 5 mGy per scan after 2001. Our findings illustrate patterns of age-specific doses and their temporal changes, and provide suitable dose estimates for radiation-induced risk estimation in epidemiological studies.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Europa (Continente)/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Imagens de Fantasmas
5.
Int J Environ Res Public Health ; 10(2): 717-28, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23429160

RESUMO

The increasing worldwide use of paediatric computed tomography (CT) has led to increasing concerns regarding the subsequent effects of exposure to radiation. In response to this concern, the international EPI-CT project was developed to study the risk of cancer in a large multi-country cohort. In radiation epidemiology, accurate estimates of organ-specific doses are essential. In EPI-CT, data collection is split into two time periods--before and after introduction of the Picture Archiving Communication System (PACS) introduced in the 1990s. Prior to PACS, only sparse information about scanner settings is available from radiology departments. Hence, a multi-level approach was developed to retrieve information from a questionnaire, surveys, scientific publications, and expert interviews. For the years after PACS was introduced, scanner settings will be extracted from Digital Imaging and Communications in Medicine (DICOM) headers, a protocol for storing medical imaging data. Radiation fields and X-ray interactions within the body will be simulated using phantoms of various ages and Monte-Carlo-based radiation transport calculations. Individual organ doses will be estimated for each child using an accepted calculation strategy, scanner settings, and the radiation transport calculations. Comprehensive analyses of missing and uncertain dosimetry data will be conducted to provide uncertainty distributions of doses.


Assuntos
Neoplasias/epidemiologia , Doses de Radiação , Tomografia Computadorizada por Raios X , Adolescente , Criança , Pré-Escolar , Europa (Continente)/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Método de Monte Carlo , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA