Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Cells ; 8(10)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569682

RESUMO

Poly(ADP-ribose) polymerase (Parp)-1 catalyzes polyADP-ribosylation using NAD+ and is involved in the DNA damage response, genome stability, and transcription. In this study, we demonstrated that aged Parp-1-/- mouse incisors showed more frequent dental dysplasia in both ICR/129Sv mixed background and C57BL/6 strain compared to aged Parp-1+/+ incisors, suggesting that Parp-1 deficiency could be involved in development of dental dysplasia at an advanced age. Computed tomography images confirmed that dental dysplasia was observed at significantly higher incidences in Parp-1-/- mice. The relative calcification levels of Parp-1-/- incisors were higher in both enamel and dentin (p < 0.05). Immunohistochemical analysis revealed (1) Parp-1 positivity in ameloblasts and odontoblasts in Parp-1+/+ incisor, (2) weaker dentin sialoprotein positivity in dentin of Parp-1-/- incisor, and (3) bone sialoprotein positivity in dentin of Parp-1-/- incisor, suggesting ectopic osteogenic formation in dentin of Parp-1-/- incisor. These results indicate that Parp-1 deficiency promotes odontogenic failure in incisors at an advanced age. Parp-1 deficiency did not affect dentinogenesis during the development of mice, suggesting that Parp-1 is not essential in dentinogenesis during development but is possibly involved in the regulation of continuous dentinogenesis in the incisors at an advanced age.


Assuntos
Polpa Dentária/patologia , Displasia da Dentina/etiologia , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/patologia , Odontoblastos/patologia , Odontogênese , Poli(ADP-Ribose) Polimerase-1/fisiologia , Fatores Etários , Animais , Polpa Dentária/metabolismo , Displasia da Dentina/patologia , Feminino , Incisivo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Odontoblastos/metabolismo
2.
Biochem Pharmacol ; 167: 116-124, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31326434

RESUMO

Poly(ADP-ribose) glycohydrolase (Parg) is a central enzyme for poly(ADP-ribose) degradation. We established a Parg+/- mice strain by deletion of a part of exon 1 and around 0.4-kb upstream of sequences of the Parg gene. Parg-/- embryos obtained by intercrossing the Parg+/- mice died in utero between 4.5 and 9.5 days postcoitum. We examined whether poly(ADP-ribose) polymerase-1 (Parp-1) deficiency could rescue embryonic lethality of Parg-/- mice. Parg-/-Parp-1-/- mice were born viable at a reduced frequency from the expected mendelian ratio in the intercross progeny of Parg+/-Parp-1-/- mice. The results suggest a possibility that the presence of Parp-1 is responsible for the lethality of Parg-/- embryos, and Parg molecules or Parg activity degrading poly(ADP-ribose) might be important for embryogenesis. In Parg-/-Parp-1-/- mice, Parg protein was not detected in various tissues, and the protein level of Timm23, a 5'-upstream gene of Parg, was reduced compared with that in Parg+/+Parp-1-/- mice. Parg-/-Parp-1-/- mice showed retarded growth compared with Parg+/+Parp-1-/- mice, and died within 3 months of age accompanied with severe renal failure. Glomerular sclerosis, tubular dilatation, and hyaline casts in the kidney were observed in Parg-/-Parp-1-/- mice. An increase in blood urea nitrogen (p < 0.05), a marked increase of albumin level in urine (p < 0.01) and its concomitant decrease in serum (p < 0.05) were also detected in Parg-/-Parp-1-/- mice compared with the Parg+/+Parp-1-/- counterpart. The results imply that the combined Parg and Parp-1 loss with a hypomorphic state of Timm23 leads to the development of severe renal failure.


Assuntos
Glicosídeo Hidrolases/deficiência , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Poli(ADP-Ribose) Polimerase-1/deficiência , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Animais , Técnicas de Cocultura , Glicosídeo Hidrolases/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Poli(ADP-Ribose) Polimerase-1/genética , Insuficiência Renal/genética
3.
Biochem Biophys Res Commun ; 499(3): 410-415, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29534966

RESUMO

Poly (ADP-ribose) polymerase family, member 1 (Parp1) has pleiotropic and disparate functions in multiple cellular signaling pathways through post-translational protein modification. It contributes to the regulation of various cellular processes, including DNA damage repair, cell death, and cell differentiation, genetically or epigenetically. Meanwhile, the functions of Parp1 in intercellular signaling remain to be established. To examine the functions of Parp1 in intercellular signaling, we examined microRNA (miRNA) regulation in exosomes derived from Parp1-deficient (Parp1-/-) embryonic stem (ES) cells. The percentages of miRNAs among total RNAs, including small RNAs such as miRNAs, snRNAs, snoRNAs, tRNAs, exonic RNAs, and intronic RNAs, in Parp1+/+ and Parp1-/- ES cell-derived exosomes were 8.2% and 3.5%, respectively. Overall, 329 distinct miRNAs exhibited ≥2-fold changes (118 upregulated; 211 downregulated). The upregulated miRNAs targeted 810 candidate genes, and the downregulated miRNAs targeted 716 candidate genes. Pathway analyses revealed that the upregulated miRNAs were significantly associated with five pathways including MAPK signaling cascades (p < 0.05), indicating that the target genes in these pathways were suppressed in Parp1-/- ES cells. In quantitative analyses of miRNA expression, miR365-3p, let-7a-5p, miR196b-5p, miR203-3p, miR98-5p, and miR146a-5p were increased by ≥ 2-fold in Parp1-/- ES cell-derived exosomes. Gene ontology enrichment analyses revealed that the upregulated miRNAs were significantly annotated for growth and stress-related cell signaling and cell communication (p < 0.05). Parp1 deficiency in ES cells led to inhibition of cell-cell communication, possibly by intercellular signal transduction, suggesting that Parp1 functions extracellularly by regulating exosomal miRNAs.


Assuntos
Células-Tronco Embrionárias/metabolismo , Exossomos/metabolismo , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Poli(ADP-Ribose) Polimerases/deficiência , Animais , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , MicroRNAs/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , RNA/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA