Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
East Afr Health Res J ; 7(1): 76-80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529492

RESUMO

Background: The Staphylococcus sciuri group constitutes animal-associated bacteria but can comprise up to 4% of coagulase-negative staphylococci isolated from human clinical samples. They are reservoirs of resistance genes that are transferable to Staphylococcus aureus but their distribution in communities in sub-Saharan Africa is unknown despite the clinical importance of methicillin-resistant S. aureus. Objectives: We characterised methicillin-resistant S. sciuri group isolates from nasal swabs of presumably healthy people living in an informal settlement in Nairobi to identify their resistance patterns, and carriage of two methicillin resistance genes. Method: Presumptive methicillin-resistant S. sciuri group were isolated from HardyCHROM™ methicillin-resistant S. aureus media. Isolate identification and antibiotic susceptibility testing were done using the VITEK®2 Compact. DNA was extracted using the ISOLATE II genomic kit and polymerase chain reaction used to detect mecA and mecC genes. Results: Of 37 presumptive isolates, 43% (16/37) were methicillin-resistant including - S. sciuri (50%; 8/16), S. lentus (31%; 5/16) and S. vitulinus (19%; 3/16). All isolates were susceptible to ciprofloxacin, gentamycin, levofloxacin, moxifloxacin, nitrofurantoin and tigecycline. Resistance was observed to clindamycin (63%), tetracycline (56%), erythromycin (56%), sulfamethoxazole/trimethoprim (25%), daptomycin (19%), rifampicin (13%), doxycycline, linezolid, and vancomycin (each 6%). Most isolates (88%; 14/16) were resistant to at least 2 antibiotic combinations, including methicillin. The mecA and mecC genes were identified in 75% and 50% of isolates, respectively. Conclusion: Colonizing S. sciuri group bacteria can carry resistance to methicillin and other therapeutic antibiotics. This highlights their potential to facilitate antimicrobial resistance transmission in community and hospital settings. Surveillance for emerging multidrug resistant strains should be considered in high transmission settings where human-animal interactions are prevalent. Our study scope precluded identifying other molecular determinants for all the observed resistance phenotypes. Larger studies that address the prevalence and risk factors for colonization with S. sciuri group and adopt a one health approach can complement the surveillance efforts.

2.
Clin Infect Dis ; 77(Suppl 1): S97-S103, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406042

RESUMO

BACKGROUND: The spread of extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE) and carbapenem-resistant Enterobacterales (CRE) represents a significant global public health threat. We identified putative risk factors for ESCrE and CRE colonization among patients in 1 urban and 3 rural hospitals in Kenya. METHODS: During a January 2019 and March 2020 cross-sectional study, stool samples were collected from randomized inpatients and tested for ESCrE and CRE. The Vitek2 instrument was used for isolate confirmation and antibiotic susceptibility testing, and least absolute shrinkage and selection operator (LASSO) regression models were used to identify colonization risk factors while varying antibiotic use measures. RESULTS: Most (76%) of the 840 enrolled participants received ≥1 antibiotic in the 14 days preceding their enrollment, primarily ceftriaxone (46%), metronidazole (28%), or benzylpenicillin-gentamycin (23%). For LASSO models that included ceftriaxone administration, ESCrE colonization odds were higher among patients hospitalized for ≥3 days (odds ratio, 2.32 [95% confidence interval, 1.6-3.37]; P < .001), intubated patients (1.73 [1.03-2.91]; P = .009), and persons living with human immunodeficiency virus (1.70 [1.03-2.8]; P = .029). CRE colonization odds were higher among patients receiving ceftriaxone (odds ratio, 2.23 [95% confidence interval, 1.14-4.38]; P = .025) and for every additional day of antibiotic use (1.08 [1.03-1.13]; P = .002). CONCLUSIONS: While CRE colonization was strongly associated with ceftriaxone use and duration of antibiotic use, the odds of ESCrE colonization increased with exposure to the hospital setting and invasive medical devices, which may reflect nosocomial transmission. These data suggest several areas where hospitals can intervene to prevent colonization among hospitalized patients, both through robust infection prevention and control practices and antibiotic stewardship programs.


Assuntos
Carbapenêmicos , Cefalosporinas , Humanos , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Carbapenêmicos/farmacologia , Ceftriaxona , Quênia/epidemiologia , Estudos Transversais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Hospitais , Monobactamas , Resistência Microbiana a Medicamentos , Fatores de Risco
3.
Clin Infect Dis ; 77(Suppl 1): S104-S110, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406050

RESUMO

BACKGROUND: Colonization with antimicrobial-resistant bacteria increases the risk of drug-resistant infections. We identified risk factors potentially associated with human colonization with extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE) in low-income urban and rural communities in Kenya. METHODS: Fecal specimens, demographic and socioeconomic data were collected cross-sectionally from clustered random samples of respondents in urban (Kibera, Nairobi County) and rural (Asembo, Siaya County) communities between January 2019 and March 2020. Presumptive ESCrE isolates were confirmed and tested for antibiotic susceptibility using the VITEK2 instrument. We used a path analytic model to identify potential risk factors for colonization with ESCrE. Only 1 participant was included per household to minimize household cluster effects. RESULTS: Stool samples from 1148 adults (aged ≥18 years) and 268 children (aged <5 years) were analyzed. The likelihood of colonization increased by 12% with increasing visits to hospitals and clinics. Furthermore, individuals who kept poultry were 57% more likely to be colonized with ESCrE than those who did not. Respondents' sex, age, use of improved toilet facilities, and residence in a rural or urban community were associated with healthcare contact patterns and/or poultry keeping and may indirectly affect ESCrE colonization. Prior antibiotic use was not significantly associated with ESCrE colonization in our analysis. CONCLUSIONS: The risk factors associated with ESCrE colonization in communities include healthcare- and community-related factors, indicating that efforts to control antimicrobial resistance in community settings must include community- and hospital-level interventions.


Assuntos
Antibacterianos , Anti-Infecciosos , Adolescente , Adulto , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Hospitais , Quênia/epidemiologia , Fatores de Risco , População Rural , Masculino , Feminino , Pré-Escolar
4.
Sci Rep ; 12(1): 22290, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566323

RESUMO

We estimated the prevalence of extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE), carbapenem-resistant Enterobacterales (CRE), and methicillin-resistant Staphylococcus aureus (MRSA) in communities and hospitals in Kenya to identify human colonization with multidrug-resistant bacteria. Nasal and fecal specimen were collected from inpatients and community residents in Nairobi (urban) and Siaya (rural) counties. Swabs were plated on chromogenic agar to presumptively identify ESCrE, CRE and MRSA isolates. Confirmatory identification and antibiotic susceptibility testing were done using the VITEK®2 instrument. A total of 1999 community residents and 1023 inpatients were enrolled between January 2019 and March 2020. ESCrE colonization was higher in urban than rural communities (52 vs. 45%; P = 0.013) and in urban than rural hospitals (70 vs. 63%; P = 0.032). Overall, ESCrE colonization was ~ 18% higher in hospitals than in corresponding communities. CRE colonization was higher in hospital than community settings (rural: 7 vs. 1%; urban: 17 vs. 1%; with non-overlapping 95% confidence intervals), while MRSA was rarely detected (≤ 3% overall). Human colonization with ESCrE and CRE was common, particularly in hospitals and urban settings. MRSA colonization was uncommon. Evaluation of risk factors and genetic mechanisms of resistance can guide prevention and control efforts tailored to different environments.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Prevalência , Quênia/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Hospitais , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA