Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(5): e0178250, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542548

RESUMO

The ErbB receptor signaling pathway plays an important role in the regulation of cellular proliferation, survival and differentiation, and dysregulation of the pathway is linked to various types of human cancer. Mathematical models have been developed as a practical complementary approach to deciphering the complexity of ErbB receptor signaling and elucidating how the pathways discriminate between ligands to induce different cell fates. In this study, we developed a simulator to accurately calculate the dynamic sensitivity of extracellular-signal-regulated kinase (ERK) activity (ERK*) and Akt activity (Akt*), downstream of the ErbB receptors stimulated with epidermal growth factor (EGF) and heregulin (HRG). To demonstrate the feasibility of this simulator, we estimated how the reactions critically responsible for ERK* and Akt* change with time and in response to different doses of EGF and HRG, and predicted that only a small number of reactions determine ERK* and Akt*. ERK* increased steeply with increasing HRG dose until saturation, while showing a gently rising response to EGF. Akt* had a gradual wide-range response to HRG and a blunt response to EGF. Akt* was sensitive to perturbations of intracellular kinetics, while ERK* was more robust due to multiple, negative feedback loops. Overall, the simulator predicted reactions that were critically responsible for ERK* and Akt* in response to the dose of EGF and HRG, illustrated the response characteristics of ERK* and Akt*, and estimated mechanisms for generating robustness in the ErbB signaling network.


Assuntos
Receptores ErbB/metabolismo , Modelos Biológicos , Simulação por Computador , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inibidores , Humanos , Cinética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA