Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 14(5): e0216254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075154

RESUMO

BACKGROUND: Pancreatic islet xenotransplantation is a potential treatment for diabetes mellitus, and porcine pancreas may provide a readily available source of islets. Islets in juvenile pigs are smaller than those in young adult pigs, but the insulin content is very similar. In addition, as juvenile pigs are more easily reared in uncontaminated conditions, many researchers have conducted studies using pancreatic islets from juvenile pigs. We aimed to analyze the distributions of endocrine cell clusters by comprehensively evaluating juvenile porcine pancreatic development and to propose an appropriate age at which islets could be isolated from the juvenile porcine pancreas. METHODS: Splenic (SL) and duodenal lobe (DL) samples were collected from the pancreases of pigs aged 0-180 days (n = 3/day after birth). The chronological changes in endocrine cell clustering were analyzed in relation to morphological changes, cell characterization, numbers, islet areas, and gene expression. RESULTS: In juvenile pigs aged 0-21 days, the pancreas contained numerous endocrine cells, and compact islets appeared from 21 days of age. Well-defined small islets were seen at 28 days of age, and the clusters were denser in the SL than in the DL. At 35 days of age, the islets were morphologically similar to those observed at 180 days of age, and the greater number of islets was similar to that seen at 90 days of age. The differences in the islets' cytoarchitecture between the lobes were negligible. The expression of ß-cell-related genes was higher in the juvenile pancreas than in the adult pancreas, and the expression of neurogenin-3 decreased dramatically over time. CONCLUSIONS: These findings may have implications for attempts to refine the most appropriate age for islet isolation from porcine donors. Focusing on porcine pancreatic islets isolated at around 35 days after birth may offer benefits regarding their xenotransplantation potential.


Assuntos
Fatores Etários , Células Endócrinas/citologia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/crescimento & desenvolvimento , Transplante Heterólogo/métodos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Análise por Conglomerados , Diabetes Mellitus/terapia , Humanos , Ilhotas Pancreáticas/citologia , Proteínas do Tecido Nervoso/metabolismo , Suínos
2.
J Surg Res ; 227: 119-129, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29804843

RESUMO

BACKGROUND: The present study aimed to evaluate whether bioengineered mouse islet cell sheets can be used for the treatment of diabetes mellitus. METHODS: Isolated mouse pancreatic islets were dispersed, and cells were plated on temperature-responsive culture plates coated with iMatrix-551. On day 3 of culture, the sheets were detached from the plates and used for further analysis or transplantation. The following parameters were assessed: (1) morphology, (2) expression of ß-cell-specific transcription factors and other islet-related proteins, (3) methylation level of the pancreatic duodenal homeobox-1 (Pdx-1) promoter, as determined by bisulfite sequencing, and (4) levels of serum glucose after transplantation of one or two islet cell sheets into the abdominal cavity of streptozotocin-induced diabetic severe combined immunodeficiency mice. RESULTS: From each mouse, we recovered approximately 233.3 ± 12.5 islets and 1.4 ± 0.1 × 105 cells after dispersion. We estimate that approximately 68.2% of the cells were lost during dispersion. The viability of recovered single cells was 91.3 ± 0.9%. The engineered islet cell sheets were stable, but the messenger RNA levels of various ß-cell-specific transcription factors were significantly lower than those of primary islets, whereas Pdx-1 promoter methylation and the expression of NeuroD, Pdx-1, and glucagon proteins were similar between sheets and islets. Moreover, transplantation of islet cell sheets did not revert serum hyperglycemia in any of the recipient mice. CONCLUSIONS: Engineering effective islet cell sheets require further research efforts, as the currently produced sheets remain functionally inferior compared with primary islets.


Assuntos
Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Cultura Primária de Células/métodos , Engenharia Tecidual/métodos , Cavidade Abdominal/cirurgia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Glicemia , Sobrevivência Celular , Células Cultivadas , Metilação de DNA , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Glucagon/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperglicemia/sangue , Hiperglicemia/terapia , Insulina , Camundongos , Camundongos SCID , Proteínas do Tecido Nervoso/metabolismo , Cultura Primária de Células/instrumentação , Regiões Promotoras Genéticas/genética , Estreptozocina/toxicidade , Transativadores/genética , Transativadores/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA