Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Colloid Interface Sci ; 665: 801-813, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555748

RESUMO

The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion. The additional hydrophilic block of the polymer should stabilize the particles in solution and enable them to encapsulate a negatively charged drug in the presence of PE excess. We demonstrated that diblock copolymers, poly(ethylene oxide)-block-poly(N,N-dimethylaminoethyl methacrylate) and poly(ethylene oxide)-block-poly(N,N,N-trimethylammonioethyl methacrylate), consisting of a polycation block and a neutral hydrophilic block, reversibly co-assemble with insulin in pH range between 5 and 8. Using small-angle neutron and X-ray scattering (SANS, SAXS), we showed that insulin arrangement within formed particles is controlled by intermolecular electrostatic forces between protein molecules, and can be tuned by varying ionic strength. For the first time, we observed by fluorescence that formed protein/PE complexes with excess of positive charges exhibited potential for encapsulating and controlled release of negatively charged bivalent drugs, protoporphyrin-IX and zinc(II) protoporphyrin-IX, enabling the development of nanocarriers for combination therapies with adjustable charge, stability, internal structure, and size.


Assuntos
Insulina , Protoporfirinas , Polieletrólitos , Óxido de Etileno , Espalhamento a Baixo Ângulo , Difração de Raios X , Polímeros/química , Proteínas , Ponto Isoelétrico
2.
J Cardiol Cases ; 28(4): 161-163, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818438

RESUMO

A 74-year-old woman with a history of mitral valve prolapse with mitral regurgitation was transferred to our hospital due to infective endocarditis. Blood culture revealed Abiotrophia defectiva which is known as a nutritional variant streptococcus. Transesophageal echocardiography revealed posterior leaflet (P2) prolapse due to rupture of tendon chordae with severe mitral regurgitation and vegetation on posterior leaflet. Magnetic resonance imaging (MRI) revealed multiple infarction lesions in left temporal lobe and parietal lobe and mycotic aneurysm formation of right middle cerebral artery. Because A. defectiva cannot be cultured on non-supplemented media, their prevalence may be underreported. Learning objective: A number of causative microorganisms of infective endocarditis have been identified. Streptococci and staphylococci account for 80 % of cases of infective endocarditis. Abiotrophia defectiva does not grow in ordinary growth media and its prevalence may be underreported. It is important to know A. defectiva causes infective endocarditis with mycotic aneurysm formation.

3.
Proc Natl Acad Sci U S A ; 120(42): e2307972120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812721

RESUMO

Although generating new neurons in the ischemic injured brain would be an ideal approach to replenish the lost neurons for repairing the damage, the adult mammalian brain retains only limited neurogenic capability. Here, we show that direct conversion of microglia/macrophages into neurons in the brain has great potential as a therapeutic strategy for ischemic brain injury. After transient middle cerebral artery occlusion in adult mice, microglia/macrophages converge at the lesion core of the striatum, where neuronal loss is prominent. Targeted expression of a neurogenic transcription factor, NeuroD1, in microglia/macrophages in the injured striatum enables their conversion into induced neuronal cells that functionally integrate into the existing neuronal circuits. Furthermore, NeuroD1-mediated induced neuronal cell generation significantly improves neurological function in the mouse stroke model, and ablation of these cells abolishes the gained functional recovery. Our findings thus demonstrate that neuronal conversion contributes directly to functional recovery after stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Macrófagos/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Mamíferos
4.
J Memb Sci ; 6782023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37465550

RESUMO

We systematically reduce the cross-link density of a PA network based on m-phenylene diamine by substituting a fraction of the trifunctional trimesoyl chloride cross-linking agent with a difunctional isophthaloyl analog that promotes chain extension, in order to elucidate robust design cues for improving the polyamide (PA) separation layer in reverse osmosis (RO) membranes for desalination. Thin films of these model PA networks are fully integrated into a composite membrane and evaluated in terms of their water flux and salt rejection. By incorporating 15 mol % of the difunctional chain extender, we reduce the cross-link density of the network by a factor of two, which leads to an 80 % increase in the free or unreacted amine content. The resulting swelling of the PA network in liquid water increases by a factor of two accompanied by a 30 % increase in the salt passage through the membrane. Surprisingly, this leads to a 30 % decrease in the overall permeance of water through the membrane. This conundrum is resolved by quantifying the microscopic diffusion coefficient of water inside the PA network with quasi-elastic neutron scattering. In the highest and lowest cross-link density networks, water shows strong signatures of confined diffusion. At short length scales, the water exhibits a translational diffusion that is consistent with the jump-diffusion mechanism. This translational diffusion coefficient is approximately five times slower in the lowest cross-linked density network, consistent with the reduced water permeance. This is interpreted as water molecules interacting more strongly with the increased free amine content. Over longer length scales the water diffusion is confined, exhibiting mobility that is independent of length scale. The length scales of confinement from the quasi-elastic neutron scattering experiments at which this transition from confined to translational diffusion occurs is on the order of (5 to 6) Å, consistent with complementary X-ray scattering, small angle neutron scattering, and positron annihilation lifetime spectroscopy measurements. The confinement appears to come from heterogeneities in the average inter-atomic distances, suggesting that diffusion occurs by water bouncing between chains and occasionally sticking to the polar functional groups. The results obtained here are compared with similar studies of water diffusion through both rigid porous silicates and ion exchange membranes, revealing robust design cues for engineering high-performance RO membranes.

5.
Genes Cells ; 28(7): 526-534, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37114566

RESUMO

Neuronal regeneration to replenish lost neurons after injury is critical for brain repair. Microglia, brain-resident macrophages that have the propensity to accumulate at the site of injury, can be a potential source for replenishing lost neurons through fate conversion into neurons, induced by forced expression of neuronal lineage-specific transcription factors. However, it has not been strictly demonstrated that microglia, rather than central nervous system-associated macrophages, such as meningeal macrophages, convert into neurons. Here, we show that NeuroD1-transduced microglia can be successfully converted into neurons in vitro using lineage-mapping strategies. We also found that a chemical cocktail treatment further promoted NeuroD1-induced microglia-to-neuron conversion. NeuroD1 with loss-of-function mutation, on the other hand, failed to induce the neuronal conversion. Our results indicate that microglia are indeed reprogrammed into neurons by NeuroD1 with neurogenic transcriptional activity.


Assuntos
Microglia , Neurônios , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Neurogênese , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Camundongos
6.
Sci Rep ; 12(1): 17980, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289433

RESUMO

Several transcription factors, including NeuroD1, have been shown to act as neuronal reprogramming factors (RFs) that induce neuronal conversion from somatic cells. However, it remains unexplored whether expression levels of RFs in the original cells affect reprogramming efficiency. Here, we show that the neuronal reprogramming efficiency from two distinct glial cell types, microglia and astrocytes, is substantially dependent on the expression level of NeuroD1: low expression failed to induce neuronal reprogramming, whereas elevated NeuroD1 expression dramatically improved reprogramming efficiency in both cell types. Moreover, even under conditions where NeuroD1 expression was too low to induce effective conversion by itself, combined expression of three RFs (Ascl1, Brn2, and NeuroD1) facilitated the breaking down of cellular barriers, inducing neuronal reprogramming. Thus, our results suggest that a sufficiently high expression level of RFs, or alternatively their combinatorial expression, is the key to achieving efficient neuronal reprogramming from different cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Reprogramação Celular , Reprogramação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurônios/metabolismo , Astrócitos/metabolismo , Fatores de Transcrição/metabolismo , Neuroglia/metabolismo
7.
Soft Matter ; 18(35): 6511-6516, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000270

RESUMO

Modern design of common adhesives, composites and polymeric parts makes use of polymer glasses that are stiff enough to maintain their shape under a high stress while still having a ductile behavior after the yield point. Typically, material compositions are tuned with co-monomers, polymer blends, plasticizers, or other additives to arrive at a tradeoff between the elastic modulus and toughness. In contrast, strong changes to the mechanics of a glass are possible by changing only the molecular packing during vitrification or even deep in the glassy state. For example, physical aging or processing techniques such as physical vapor deposition increase the density, embrittle the material, and increase elastic modulus. Here, we use molecular simulations, validated by positron annihilation lifetime spectroscopy (PALS) and quasi-elastic neutron scattering, to understand the free volume distribution and the resulting dynamics of glassy co-polymers where the composition is systemically varied between polar 5-norbornene-2-methanol (NBOH) and non-polar ethylidene norbornene (ENB) monomers. In these polymer glasses, we analyze the structural features of the unoccupied volume using clustering analysis, where the clustering is parameterized to reproduce experimental measurements of the same features from PALS. Further, we analyze the dynamics, quantified by the Debye-Waller factor, and compare the results with softer, lower density states. Our findings indicate that faster structural relaxations and potentially improved ductility are possible through changes to the geometric structure and fraction of the free volume, and that the resulting changes to the glass dynamics are comparable to large changes in the monomer composition.

9.
Nat Commun ; 11(1): 5292, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087715

RESUMO

Recent advances have enabled the direct induction of human tissue-specific stem and progenitor cells from differentiated somatic cells. However, it is not known whether human hepatic progenitor cells (hHepPCs) can be generated from other cell types by direct lineage reprogramming with defined transcription factors. Here, we show that a set of three transcription factors, FOXA3, HNF1A, and HNF6, can induce human umbilical vein endothelial cells to directly acquire the properties of hHepPCs. These induced hHepPCs (hiHepPCs) propagate in long-term monolayer culture and differentiate into functional hepatocytes and cholangiocytes by forming cell aggregates and cystic epithelial spheroids, respectively, under three-dimensional culture conditions. After transplantation, hiHepPC-derived hepatocytes and cholangiocytes reconstitute damaged liver tissues and support hepatic function. The defined transcription factors also induce hiHepPCs from endothelial cells circulating in adult human peripheral blood. These expandable and bipotential hiHepPCs may be useful in the study and treatment of human liver diseases.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células Endoteliais/citologia , Hepatócitos/citologia , Células-Tronco/citologia , Animais , Ductos Biliares/citologia , Ductos Biliares/fisiologia , Agregação Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Células Endoteliais/fisiologia , Feminino , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 3-gama Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/fisiologia , Fator 6 Nuclear de Hepatócito/genética , Fator 6 Nuclear de Hepatócito/fisiologia , Hepatócitos/fisiologia , Hepatócitos/transplante , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Esferoides Celulares/citologia , Esferoides Celulares/fisiologia , Células-Tronco/fisiologia
10.
Langmuir ; 36(43): 12830-12837, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33085483

RESUMO

We performed H2O and D2O double-contrast neutron reflectivity measurements on ∼25 nm thick Nafion thin films on hydrophilic and hydrophobic carbon in water and 80% relative humidity vapor to investigate the depth profile of the water and Nafion distribution. We found a dense Nafion layer at the air or water interface regardless of the carbon hydrophilicity. On the other hand, a water-rich Nafion dense layer was observed at the carbon interface only for hydrophilic carbon. The double-contrast measurements provided quantitative information about the depth profile but simultaneously indicated that the sum of the volume occupancies of water and Nafion in the film was less than unity. We assessed the problem based on two possibilities: voids in the film or "residual water", which cannot be exchanged or is difficult to exchange with water outside.

11.
Phys Chem Chem Phys ; 21(16): 8517-8528, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30957810

RESUMO

The single particle dynamics of water confined within two ordered mesoporous carbon matrices was investigated in the temperature range from 290 K to 170 K by quasielastic neutron scattering using three high resolution neutron spectrometers. Thus, it was possible to investigate the mobility of water confined in model hydrophobic cavities at the nanoscale. Models developed for the nanoscale dynamics of supercooled water and water confined within hydrophilic matrices were able to describe the collected data but remarkable differences with analogous silica confined matrices were observed in these carbon samples. A significant fraction of the water molecules was immobile on the nanosecond timescale, even at room temperature. As the temperature was lowered, the mobility of the water molecules slowed down, but the strongly non-Arrhenius behavior observed in bulk water and for fully hydrated hydrophilic confinement was absent, which indicates frustration of the hydrogen bond network formation. The obtained results were relevant for applications of mesoporous carbon materials.

12.
J Med Case Rep ; 12(1): 295, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30293532

RESUMO

BACKGROUND: TAFRO syndrome, which was first reported in 2010 in Japan, is a relatively rare disease characterized by thrombocytopenia, anasarca, fever, renal impairment, reticulin fibrosis, and organomegaly. Although this disease is considered similar to multicentric Castleman disease, some of the clinical features, such as thrombocytopenia, are different from typical cases of multicentric Castleman disease. In addition, the etiology of TAFRO syndrome remains unknown and controversial. There have only been a few cases of TAFRO syndrome complicated with adrenal gland lesions, and all of them have had hemorrhagic involvement. CASE PRESENTATION: This report describes the case of a 46-year-old Asian man who presented with fever, epigastric pain, and back pain for 1 month. A computed tomographic scan revealed ascites, mild lymphadenopathy, and left adrenal necrosis without hemorrhage. A blood test showed thrombocytopenia, anemia, and elevated C-reactive protein, alkaline phosphatase, and creatinine levels. Based on the edema, severe thrombocytopenia, fever, reticulin myelofibrosis shown by bone marrow biopsy, mild lymphadenopathy, and progressive renal insufficiency, we diagnosed this patient as having TAFRO syndrome. He was successfully treated by immediate administration of glucocorticoids and tocilizumab. CONCLUSIONS: There have been no previous reports of a case of TAFRO syndrome complicated with adrenal necrosis. Because the biopsy of the left adrenal gland revealed necrosis without any evidence of hemorrhage, we concluded that the unilateral adrenal necrosis in this case was caused by either ischemia from infarction or organomegaly itself under severe hypercytokinemia. This unusual clinical course is useful for further analysis of the etiology of TAFRO syndrome.


Assuntos
Doenças das Glândulas Suprarrenais , Glândulas Suprarrenais , Anticorpos Monoclonais Humanizados/administração & dosagem , Edema/diagnóstico , Febre/diagnóstico , Glucocorticoides/administração & dosagem , Mielofibrose Primária/diagnóstico , Insuficiência Renal/diagnóstico , Trombocitopenia/diagnóstico , Doenças das Glândulas Suprarrenais/diagnóstico , Doenças das Glândulas Suprarrenais/tratamento farmacológico , Doenças das Glândulas Suprarrenais/etiologia , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/patologia , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Diagnóstico Diferencial , Edema/tratamento farmacológico , Febre/tratamento farmacológico , Humanos , Fatores Imunológicos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Necrose , Mielofibrose Primária/tratamento farmacológico , Reticulina , Síndrome , Trombocitopenia/tratamento farmacológico , Resultado do Tratamento
13.
Stem Cell Reports ; 7(6): 1130-1139, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27916538

RESUMO

Hepatic progenitor cells (HPCs) appear in response to several types of chronic injury in the human and rodent liver that often develop into liver fibrosis, cirrhosis, and primary liver cancers. However, the contribution of HPCs to the pathogenesis and progression of such liver diseases remains controversial. HPCs are generally defined as cells that can differentiate into hepatocytes and cholangiocytes. In this study, however, we found that HPCs isolated from the chronically injured liver can also give rise to myofibroblasts as a third type of descendant. While myofibroblast differentiation from HPCs is not significant in culture, during tumor development, HPCs can contribute to the formation of the tumor microenvironment by producing abundant myofibroblasts that might form a niche for tumor growth and survival. Thus, HPCs can be redefined as cells with a potential for differentiation into myofibroblasts that is specifically activated during tumor formation.


Assuntos
Fígado/citologia , Miofibroblastos/citologia , Células-Tronco/citologia , Microambiente Tumoral , Animais , Contagem de Células , Diferenciação Celular , Separação Celular , Células Cultivadas , Células Clonais , Fígado/embriologia , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo
14.
Sci Rep ; 6: 34691, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698452

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a malignant epithelial neoplasm composed of cells resembling cholangiocytes that line the intrahepatic bile ducts in portal areas of the hepatic lobule. Although ICC has been defined as a tumor arising from cholangiocyte transformation, recent evidence from genetic lineage-tracing experiments has indicated that hepatocytes can be a cellular origin of ICC by directly changing their fate to that of biliary lineage cells. Notch signaling has been identified as an essential factor for hepatocyte conversion into biliary lineage cells at the onset of ICC. However, the mechanisms underlying Notch signal activation in hepatocytes remain unclear. Here, using a mouse model of ICC, we found that hepatic macrophages called Kupffer cells transiently congregate around the central veins in the liver and express the Notch ligand Jagged-1 coincident with Notch activation in pericentral hepatocytes. Depletion of Kupffer cells prevents the Notch-mediated cell-fate conversion of hepatocytes to biliary lineage cells, inducing hepatocyte apoptosis and increasing mortality in mice. These findings will be useful for uncovering the pathogenic mechanism of ICC and developing prevenient and therapeutic strategies for this refractory disease.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Hepatócitos/patologia , Proteína Jagged-1/genética , Células de Kupffer/patologia , Receptor Notch1/genética , Animais , Neoplasias dos Ductos Biliares/induzido quimicamente , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/efeitos dos fármacos , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Carcinógenos/toxicidade , Comunicação Celular , Desdiferenciação Celular/efeitos dos fármacos , Colangiocarcinoma/induzido quimicamente , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Ácido Clodrônico/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Proteína Jagged-1/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/toxicidade , Receptor Notch1/metabolismo , Transdução de Sinais , Análise de Sobrevida , Tioacetamida/toxicidade
15.
J Colloid Interface Sci ; 469: 157-163, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874981

RESUMO

HYPOTHESIS: The mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. EXPERIMENTS: We investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. We measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. FINDINGS: Structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.

16.
Phys Rev Lett ; 115(23): 235701, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684125

RESUMO

The boson peak in deeply cooled water confined in nanopores is studied to examine the liquid-liquid transition (LLT). Below ∼180 K, the boson peaks at pressures P higher than ∼3.5 kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. These phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. In addition, the P dependence of the librational band also agrees with the above conclusion.

17.
J Chem Phys ; 143(11): 114508, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26395720

RESUMO

With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

18.
J Phys Chem Lett ; 6(11): 2009-14, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26266493

RESUMO

Using neutron diffraction technique, we measure the average density of the heavy water confined in a nanoporous silica matrix, MCM-41, over the pressure-temperature plane. The result suggests the existence of a line of liquid-liquid phase transition with its end point at 1.29 ± 0.34 kbar and 213 ± 3 K in a fully hydrated sample. This point would be the liquid-liquid critical point (LLCP) according to the "liquid-liquid critical point" scenario. The phase diagram of the deeply cooled confined heavy water is then discussed. Moreover, in a partially hydrated sample, the phase transition completely disappears. This result shows that it is the free water part, rather than the bound water part, of the confined water that undergoes a liquid-liquid transition.

19.
Nat Plants ; 1: 15128, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250681

RESUMO

Self-incompatibility in the Brassicaceae is controlled by multiple haplotypes encoding the pollen ligand (S-locus protein 11, SP11, also known as S-locus cysteine-rich protein, SCR) and its stigmatic receptor (S-receptor kinase, SRK). A haplotype-specific interaction between SP11/SCR and SRK triggers the self-incompatibility response that leads to self-pollen rejection, but the signalling pathway remains largely unknown. Here we show that Ca(2+) influx into stigma papilla cells mediates self-incompatibility signalling. Using self-incompatible Arabidopsis thaliana expressing SP11/SCR and SRK, we found that self-pollination specifically induced an increase in cytoplasmic Ca(2+) ([Ca(2+)]cyt) in papilla cells. Direct application of SP11/SCR to the papilla cell protoplasts induced Ca(2+) increase, which was inhibited by D-(-)-2-amino-5-phosphonopentanoic acid (AP-5), a glutamate receptor channel blocker. An artificial increase in [Ca(2+)]cyt in papilla cells arrested wild-type (WT) pollen hydration. Treatment of papilla cells with AP-5 interfered with self-incompatibility, and Ca(2+) increase on the self-incompatibility response was reduced in the glutamate receptor-like channel (GLR) gene mutants. These results suggest that Ca(2+) influx mediated by GLR is the essential self-incompatibility response leading to self-pollen rejection.

20.
Anal Sci ; 29(3): 353-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23474726

RESUMO

The thermal behavior and structure of water confined in Sephadex G15 gel were investigated over a temperature range of 298-173 K at hydration levels, h (= mass of water/mass of dry G15 gel), of 0.24-1.38 by differential scanning calorimetry (DSC) and an X-ray diffraction (XRD) method, respectively. The ice-melting peaks on the DSC curves were deconvoluted to estimate the amounts of three states of water in G15 with h: free water, freezable bound water, and unfrozen water. The X-ray radial distribution functions of unfrozen water at h = 0.24 revealed that the hydrogen-bonded structure of water is largely distorted, due to hydrogen bonding with the surface hydroxyl groups of gel substrates, compared with those of freezable bound water at h = 0.47 and bulk water. A plausible separation mechanism of solutes in gel chromatography was considered from a structural point of view of confined water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA