Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Pathogens ; 13(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39057818

RESUMO

Here, 12 Fusarium strains, previously described as F. oxysporum f. sp. cepae (Foc), were examined via multi-locus sequencing of calmodulin (cmdA), RNA polymerase II second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1), to verify the taxonomic position of Foc in the newly established epitype of F. oxysporum. The strains in this study were divided into two clades: F. nirenbergiae and Fusarium sp. To further determine the host specifications of the strains, inoculation tests were performed on onion bulbs and Welsh onion seedlings as potential hosts. Four strains (AC145, AP117, Ru-13, and TA) isolated from diseased onions commonly possessed the secreted in xylem (SIX)-3, 5, 7, 9, 10, 12, and 14 genes and were pathogenic and highly aggressive to onion bulbs, whereas all strains except for one strain (AF97) caused significant inhibition of Welsh onion growth. The inoculation test also revealed that the strains harboring the SIX9 gene were highly aggressive to both onion and Welsh onion and the gene was expressed during infection of both onions and Welsh onions, suggesting the important role of the SIX9 gene in pathogenicity. This study provides insights into the evolutionary pathogenicity differentiation of Fusarium strains causing Fusarium basal rot and wilt diseases in Allium species.

2.
Sci Rep ; 14(1): 17578, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080427

RESUMO

The quasi-stationary jet, a branch of the Kuroshio Extension, transports warm saline water in the mixed water region of the western North Pacific. Around the subarctic front between the quasi-stationary jet and Oyashio and its downstream area is a biologically productive area including small pelagic fishes. However, how nutrient is supplied to the euphotic zone in this region remains elusive, especially into the quasi-stationary jet. Using high-resolution hydrography sections across the jet, we showed that Oyashio water isopycnally intrudes under the jet around 26.5-26.8 σθ and forms nutrient-rich intermediate water. Upwelling associated with ageostrophic secondary circulation across the front, caused by confluence, uplifts the intermediate water. A local nitrate maximum was also identified inside the jet by the hydrographic observation. Upwelling has been suggested as a precondition for nutrient supply from nutrient-rich intermediate water to the jet through water mixing which potentially sustains high biological production in the downstream.

3.
Mol Biol Evol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850168

RESUMO

We developed phyloBARCODER (https://github.com/jun-inoue/phyloBARCODER), a new web tool that can identify short DNA sequences to the species level using metabarcoding. phyloBARCODER estimates phylogenetic trees based on uploaded anonymous DNA sequences and reference sequences from databases. Without such phylogenetic contexts, alternative, similarity-based methods independently identify species names and anonymous sequences of the same group by pairwise comparisons between queries and database sequences, with the caveat that they must match exactly or very closely. By putting metabarcoding sequences into a phylogenetic context, phyloBARCODER accurately identifies (1) species or classification of query sequences and (2) anonymous sequences associated with the same species or even with populations of query sequences, with clear and accurate explanations. Version 1 of phyloBARCODER stores a database comprising all eukaryotic mitochondrial gene sequences. Moreover, by uploading their own databases, phyloBARCODER users can conduct species identification specialized for sequences obtained from a local geographic region or those of non-mitochondrial genes, e.g., ITS or rbcL.

4.
J Pestic Sci ; 49(1): 52-57, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450088

RESUMO

Flusulfamide inhibits germination of Plasmodiophora brassicae resting spores to suppress clubroot disease, but its mechanism of action on the germination of P. brassicae resting spores remains unclear. In this study, P. brassicae resting spores were treated with flusulfamide and visualized using transmission electron microscopy (TEM). The gene expression of P. brassicae resting spores was analyzed using RT-PCR, followed by immunoblotting analysis. TEM results revealed that flusulfamide suppressed the primary zoosporogenesis of P. brassicae resting spores during the early phase, and RT-PCR results revealed that flusulfamide affected the gene expression during the germination of the resting spores. Immunoblot and RT-qPCR analyses revealed that PbCyp3, an immunophilin (peptidyl-prolyl-isomerase) gene, was highly expressed, resulting in the unusual accumulation of PbCYP3 protein in P. brassicae resting spores immediately after treatment with flusulfamide. This suggests that flusulfamide may cause aberrant folding of proteins involved in primary zoosporogenesis, thereby inhibiting germination.

5.
Small ; 20(27): e2310239, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38299473

RESUMO

Solid-state hydrogen storage materials are safe and lightweight hydrogen carriers. Among the various solid-state hydrogen carriers, hydrogen boride (HB) sheets possess a high gravimetric hydrogen capacity (8.5 wt%). However, heating at high temperatures and/or strong ultraviolet illumination is required to release hydrogen (H2) from HB sheets. In this study, the electrochemical H2 release from HB sheets using a dispersion system in an organic solvent without other proton sources is investigated. H2 molecules are released from the HB sheets under the application of a cathodic potential. The Faradaic efficiency for H2 release from HB sheets reached >90%, and the onset potential for H2 release is -0.445 V versus Ag/Ag+, which is more positive than those from other proton sources, such as water or formic acid, under the same electrochemical conditions. The total electrochemically released H2 in a long-time experiment reached ≈100% of the hydrogen capacity of HB sheets. The H2 release from HB sheets is driven by a small bias; thus, they can be applied as safe and lightweight hydrogen carriers with economical hydrogen release properties.

6.
Fungal Genet Biol ; 170: 103860, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38114016

RESUMO

Fusarium oxysporum f. sp. cepae (Foc) is the causative agent of Fusarium basal rot disease in onions, which leads to catastrophic global crop production losses. Therefore, the interaction of Foc with its host has been actively investigated, and the pathogen-specific (PS) regions of the British strain Foc_FUS2 have been identified. However, it has not been experimentally determined whether the identified PS region plays a role in pathogenicity. To identify the pathogenicity chromosome in the Japanese strain Foc_TA, we initially screened effector candidates, defined as small proteins with a signal peptide that contain two or more cysteines, from genome sequence data. Twenty-one candidate effectors were identified, five of which were expressed during infection. Of the expressed effector candidates, four were located on the 4-Mb-sized chromosome in Foc_TA. To clarify the relationship between pathogenicity and the 4-Mb-sized chromosome in Foc_TA, nine putative 4-Mb-sized chromosome loss strains were generated by treatment with benomyl (a mitotic inhibitor drug). A pathogenicity test with putative 4-Mb-sized chromosome loss strains showed that these strains were impaired in their pathogenicity toward onions. Genome analysis of three putative 4-Mb-sized chromosome loss strains revealed that two strains lost a 4-Mb-sized chromosome in common, and another strain maintained a 0.9-Mb region of the 4-Mb-sized chromosome. Our findings show that the 4-Mb-sized chromosome is the pathogenicity chromosome in Foc_TA, and the 3.1-Mb region within the 4-Mb-sized chromosome is required for full pathogenicity toward onion.


Assuntos
Fusarium , Virulência/genética , Fusarium/genética , Cromossomos , Doenças das Plantas/genética
7.
Microorganisms ; 11(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38138005

RESUMO

Fusarium oxysporum f. sp. cepae (Foc) causes basal rot disease in Allium species, including onions (Allium cepa L.) and shallots (A. cepa L. Aggregatum group). Among Allium species, shallots can be crossbred with onions and are relatively more resistant to Foc than onions. Thus, shallots are considered a potential disease-resistant resource for onions. However, the mechanisms underlying the molecular interactions between shallots and Foc remain unclear. This study demonstrated that SIX5, an effector derived from Foc (FocSIX5), acts as an avirulence effector in shallots. We achieved this by generating a FocSIX5 gene knockout mutant in Foc, for which experiments which revealed that it caused more severe wilt symptoms in Foc-resistant shallots than the wild-type Foc and FocSIX5 gene complementation mutants. Moreover, we demonstrated that a single amino acid substitution (R67K) in FocSIX5 was insufficient to overcome shallot resistance to Foc.

8.
Phys Chem Chem Phys ; 25(22): 15531-15538, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249577

RESUMO

Two-dimensional hydrogen boride (HB) sheets prepared via the ion-exchange reaction from magnesium diboride (MgB2) are known to possess several intriguing properties for a wide range of applications; however, previous reports have shown that the sheets prepared using this method contain small amounts of reactive components, making them unsuitable for certain applications. Therefore, developing a method for preparing HB sheets that exhibit long-term stability and do not contain reactive species is essential. In this study, we developed an effective treatment method for achieving long-term stabilization of HB sheets. We found that by pre-treating the HB sheets with water and then filtering the dried product from an acetonitrile dispersion, we could achieve excellent long-term stability over nine months. This stability was maintained even outside of a glovebox, with no H2 released by the decomposition and/or reaction. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) absorption spectroscopy measurements revealed that the sample exhibited pure HB characteristics with negatively charged boron and B-H-B and terminal B-H bonds, even after nine months of storage. Furthermore, based on thermal desorption spectroscopy (TDS) measurements, the presence of reactive species in the as-prepared HB sheets is attributed to fluctuating B-H bonds with relatively weak binding energies that can be removed using the method developed in this study.

9.
J Fungi (Basel) ; 9(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37108886

RESUMO

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the essential food crop for over ninety million people living in drier parts of India and South Africa. Pearl millet crop production is harshly hindered by numerous biotic stresses. Sclerospora graminicola causes downy mildew disease in pearl millet. Effectors are the proteins secreted by several fungi and bacteria that manipulate the host cell structure and function. This current study aims to identify genes encoding effector proteins from the S. graminicola genome and validate them through molecular techniques. In silico analyses were employed for candidate effector prediction. A total of 845 secretory transmembrane proteins were predicted, out of which 35 proteins carrying LxLFLAK (Leucine-any amino acid-Phenylalanine-Leucine-Alanine-Lysine) motif were crinkler, 52 RxLR (Arginine, any amino acid, Leucine, Arginine), and 17 RxLR-dEER putative effector proteins. Gene validation analysis of 17 RxLR-dEER effector protein-producing genes was carried out, of which 5genes were amplified on the gel. These novel gene sequences were submitted to NCBI. This study is the first report on the identification and characterization of effector genes in Sclerospora graminicola. This dataset will aid in the integration of effector classes that act independently, paving the way to investigate how pearl millet responds to effector protein interactions. These results will assist in identifying functional effector proteins involving the omic approach using newer bioinformatics tools to protect pearl millet plants against downy mildew stress. Considered together, the identified effector protein-encoding functional genes can be utilized in screening oomycetes downy mildew diseases in other crops across the globe.

10.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769262

RESUMO

Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is a devastating soilborne disease in tomatoes. Magnesium oxide nanoparticles (MgO NPs) induce strong immunity against Fusarium wilt in tomatoes. However, the mechanisms underlying this immunity remain poorly understood. Comparative transcriptome analysis and microscopy of tomato roots were performed to determine the mechanism of MgO NP-induced immunity against FOL. Eight transcriptomes were prepared from tomato roots treated under eight different conditions. Differentially expressed genes were compared among the transcriptomes. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that in tomato roots pretreated with MgO NPs, Rcr3 encoding apoplastic protease and RbohD encoding NADPH oxidase were upregulated when challenge-inoculated with FOL. The gene encoding glycine-rich protein 4 (SlGRP4) was chosen for further analysis. SlGRP4 was rapidly transcribed in roots pretreated with MgO NPs and inoculated with FOL. Immunomicroscopy analysis showed that SlGRP4 accumulated in the cell walls of epidermal and vascular vessel cells of roots pretreated with MgO NPs, but upon FOL inoculation, SlGRP4 further accumulated in the cell walls of cortical tissues within 48 h. The results provide new insights into the probable mechanisms of MgO NP-induced tomato immunity against Fusarium wilt.


Assuntos
Fusarium , Nanopartículas , Solanum lycopersicum , Solanum lycopersicum/genética , Fusarium/genética , Óxido de Magnésio , Doenças das Plantas/genética
11.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500350

RESUMO

Hydrogen boride (HB) sheets are two-dimensional materials comprising a negatively charged hexagonal boron network and positively charged hydrogen atoms with a stoichiometric ratio of 1:1. Herein, we report the spontaneous formation of highly dispersed Ni nanoclusters on HB sheets. The spontaneous reduction reaction of Ni ions by the HB sheets was monitored by in-situ measurements with an ultraviolet-visible spectrometer. Acetonitrile solutions of Ni complexes and acetonitrile dispersions of the HB sheets were mixed in several molar ratios (the HB:Ni molar ratio was varied from 100:0.5 to 100:20), and the changes in the absorbance were measured over time. In all cases, the results suggest that Ni metal clusters grow on the HB sheets, considering the increase in absorbance with time. The absorbance peak position shifts to the higher wavelength as the Ni ion concentration increases. Transmission electron microscopy images of the post-reaction products indicate the formation of Ni nanoclusters, with sizes of a few nanometers, on the HB sheets, regardless of the preparation conditions. These highly dispersed Ni nanoclusters supported on HB sheets will be used for catalytic and plasmonic applications and as hydrogen storage materials.


Assuntos
Hidrogênio , Catálise , Microscopia Eletrônica de Transmissão , Concentração de Íons de Hidrogênio
12.
Pathogens ; 11(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36558767

RESUMO

Fusarium oxysporum f. sp. radicis-lycopersici (Forl) causes crown and root rot disease in tomato, effecting severe economic losses. However, research on the pathogenicity genes and infection strategy of Forl is limited compared to that on F. oxysporum f. sp. lycopersici (Fol). In this study, we characterized FoMC69 gene in Forl as a homolog of MC69 required for pathogenicity in rice blast pathogen-Magnaporthe oryzae. Gene expression analysis revealed that FoMC69 expressionin Forl is higher than that in Folin planta. FoMC69-knockout mutant of Forl had significantly reduced root rot symptoms compared to the wild-type strain, and full pathogenicity was restored by complementation. By contrast, ΔFoMC69 mutant of Fol presented the same symptoms as the wild type, suggesting that FoMC69 of Forl, but not of Fol, was essential for full virulence in tomato plants. Morphological differences between the Forl and ΔFoMC69 in the roots were observed by fluorescent labeling using WGA-FITC. Chlamydospores of the ΔFoMC69 mutant of Forlcontinuously increased during infection and were three times higher than that of the wild type at 21 days post-inoculation. These observations suggest that FoMC69 of Forl is required for virulence to tomato plants by involving the normal development and germination of chlamydospores.

13.
PLoS One ; 17(9): e0273670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36070298

RESUMO

Environmental DNA (eDNA) is increasingly used to noninvasively monitor aquatic animals in freshwater and coastal areas. However, the use of eDNA in the open ocean (hereafter referred to OceanDNA) is still limited because of the sparse distribution of eDNA in the open ocean. Small pelagic fish have a large biomass and are widely distributed in the open ocean. We tested the performance of two OceanDNA analysis methods-species-specific qPCR (quantitative polymerase chain reaction) and MiFish metabarcoding using universal primers-to determine the distribution of small pelagic fish in the open ocean. We focused on six small pelagic fish species (Sardinops melanostictus, Engraulis japonicus, Scomber japonicus, Scomber australasicus, Trachurus japonicus, and Cololabis saira) and selected the Kuroshio Extension area as a testbed, because distribution of the selected species is known to be influenced by the strong frontal structure. The results from OceanDNA methods were compared to those of net sampling to test for consistency. Then, we compared the detection performance in each target fish between the using of qPCR and MiFish methods. A positive correlation was evident between the qPCR and MiFish detection results. In the ranking of the species detection rates and spatial distribution estimations, comparable similarity was observed between results derived from the qPCR and MiFish methods. In contrast, the detection rate using the qPCR method was always higher than that of the MiFish method. Amplification bias on non-target DNA and low sample DNA quantity seemed to partially result in a lower detection rate for the MiFish method; the reason is still unclear. Considering the ability of MiFish to detect large numbers of species and the quantitative nature of qPCR, the combined usage of the two methods to monitor quantitative distribution of small pelagic fish species with information of fish community structures was recommended.


Assuntos
DNA Ambiental , Perciformes , Animais , Biodiversidade , DNA/análise , DNA/genética , DNA Ambiental/genética , Peixes/genética , Oceanos e Mares , Perciformes/genética
14.
Commun Chem ; 5(1): 118, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36698003

RESUMO

Hydrogen boride (HB) sheets are metal-free two-dimensional materials comprising boron and hydrogen in a 1:1 stoichiometric ratio. In spite of the several advancements, the fundamental interactions between HB sheets and discrete molecules remain unclear. Here, we report the adsorption of CO2 and its conversion to CH4 and C2H6 using hydrogen-deficient HB sheets. Although fresh HB sheets did not adsorb CO2, hydrogen-deficient HB sheets reproducibly physisorbed CO2 at 297 K. The adsorption followed the Langmuir model with a saturation coverage of 2.4 × 10-4 mol g-1 and a heat of adsorption of approximately 20 kJ mol-1, which was supported by density functional theory calculations. When heated in a CO2 atmosphere, hydrogen-deficient HB began reacting with CO2 at 423 K. The detection of CH4 and C2H6 as CO2 reaction products in a moist atmosphere indicated that hydrogen-deficient HB promotes C-C coupling and CO2 conversion reactions. Our findings highlight the application potential of HB sheets as catalysts for CO2 conversion.

15.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205396

RESUMO

Members of the lectin receptor-like kinase (LecRLKs) family play a vital role in innate plant immunity. Few members of the LecRLKs family have been characterized in rice and Arabidopsis, respectively. However, little literature is available about LecRLKs and their role against fungal infection in cucumber. In this study, 60 putative cucumber LecRLK (CsLecRLK) proteins were identified using genome-wide analysis and further characterized into L-type LecRLKs (24) and G-type LecRLKs (36) based on domain composition and phylogenetic analysis. These proteins were allocated to seven cucumber chromosomes and found to be involved in the expansion of the CsLecRLK gene family. Subcellular localization of CsaLecRLK9 and CsaLecRLK12 showed green fluorescence signals in the plasma membrane of leaves. The transcriptional profiling of CsLecRLK genes showed that L-type LecRLKs exhibited functional redundancy as compared to G-type LecRLKs. The qRT-PCR results indicated that both L- and G-type LecRLKs showed significant response against plant growth-promoting fungi (PGPF-Trichoderma harzianum Rifai), powdery mildew pathogen (PPM-Golovinomyces orontii (Castagne) V.P. Heluta), and combined (PGPF+PPM) treatments. The findings of this study contribute to a better understanding of the role of cucumber CsLecRLK genes in response to PGPF, PPM, and PGPF+PPM treatments and lay the basis for the characterization of this important functional gene family.


Assuntos
Cucumis sativus/enzimologia , Erysiphe/imunologia , Imunidade Vegetal , Proteínas Quinases/genética , Estresse Fisiológico , Cromossomos de Plantas , Cucumis sativus/genética , Cucumis sativus/imunologia , Perfilação da Expressão Gênica , Genes de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo
16.
Phys Chem Chem Phys ; 23(13): 7724-7734, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32870215

RESUMO

Two-dimensional hydrogen boride (HB) sheets were recently demonstrated to act as a solid acid catalyst in their hydrogen-deficient state. However, both the active sites and the mechanism of the catalytic process require further elucidation. In this study, we analyzed the conversion of ethanol adsorbed on HB sheets under vacuum during heating using in situ Fourier transform infrared (FT-IR) absorption spectroscopy with isotope labelling. Up to 450 K, the FT-IR peak associated with the OH group of the adsorbed ethanol molecule disappeared from the spectrum, which was attributed to a dehydration reaction with a hydrogen atom from the HB sheet, resulting in the formation of an ethyl species. At temperatures above 440 K, the number of BD bonds markedly increased in CD3CH2OH, compared to CH3CD2OH; the temperature dependence of the formation rate of BD bonds was similar to that of the dehydration reaction rate of ethanol on HB sheets under steady-state conditions. The rate-determining step of the dehydration of ethanol on HB was thus ascribed to the dehydrogenation of the methyl group of the ethyl species on the HB sheets, followed by the immediate desorption of ethylene. These results show that the catalytic ethanol dehydration process on HB involves the hydrogen atoms of the HB sheets. The obtained mechanistic insights are expected to promote the practical application of HB sheets as catalysts.

17.
J Biotechnol ; 325: 100-108, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33186662

RESUMO

Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is a worldwide tomato disease. Although Fusarium wilt management remains unsuccessful, enhancing host FOL resistance using magnesium oxide to activate plant immunity may enable effective control. We demonstrated that MgO-pretreatment of roots induced FOL resistance in susceptible tomato plants. Resistance was not induced in tomato mutants deficient in the jasmonic acid (JA) signaling pathway, whereas the opposite trend was observed in mutants deficient in the salicylic acid and ethylene signaling pathways, suggesting that JA signaling activation is essential for MgO-induced FOL immunity. Quantitative real-time polymerase chain reaction analysis of MgO-pretreated tomato plants, and challenge-inoculated with FOL, revealed that MYELOCYTOMATOSIS ONCOGENE HOMOLOG 2 (MYC2), the master regulator of JA signaling, as well as MYC2-targeted transcription factors that directly regulate the JA-induced transcription of late defense genes and their downstream wound-responsive genes were preferentially upregulated in both roots and stems. Moreover, in MgO-pretreated tomato plants challenge-inoculated with FOL, the late wound-responsive THREONINE DEAMINASE 2 (TD) gene was expressed earlier than its upstream genes, including MYC2, suggesting that a primed state for defense was established in MgO-pretreated plants. We conclude that MgO is a promising agent for the control of Fusarium wilt.


Assuntos
Fusarium , Solanum lycopersicum , Ciclopentanos , Solanum lycopersicum/genética , Óxido de Magnésio , Oxilipinas , Doenças das Plantas , Transdução de Sinais
18.
J Fungi (Basel) ; 6(4)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291279

RESUMO

Fungal volatile organic compounds (VOCs) emitted by Trichoderma species interact with a plant host and display multifaceted mechanisms. In this study, we investigated the antifungal activity of VOCs emitted by Trichoderma asperelloides PSU-P1 against fungal pathogens, as well as the ability of VOCs to activate defense responses and to promote plant growth in Arabidopsis thaliana. The strain's VOCs had remarkable antifungal activity against fungal pathogens, with an inhibition range of 15.92-84.95% in a volatile antifungal bioassay. The VOCs of T. asperelloides PSU-P1 promoted the plant growth of A. thaliana, thereby increasing the fresh weight, root length, and chlorophyll content in the VOC-treated A. thaliana relative to those of the control. High expression levels of the chitinase (CHI) and ß-1,3-glucanase (GLU) genes were found in the VOC-treated A. thaliana by quantitative reverse transcription polymerase chain reaction (RT-PCR). The VOC-treated A. thaliana had higher defense-related enzyme (peroxidase (POD)) and cell wall-degrading enzyme (chitinase and ß-1,3-glucanase) activity than in the control. The headspace VOCs produced by PSU-P1, trapped with solid phase microextraction, and tentatively identified by gas chromatography-mass spectrometry, included 2-methyl-1-butanol, 2-pentylfuran, acetic acid, and 6-pentyl-2H-pyran-2-one (6-PP). The results suggest that T. asperelloides PSU-P1 emits VOCs responsible for antifungal activity, for promoting plant growth, and for inducing defense responses in A. thaliana.

19.
Neuroscience ; 448: 85-93, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32941935

RESUMO

Peripheral nerve injury induces functional reorganization of the central nervous system. The mechanisms underlying this reorganization have been widely studied. Our previous study involving multiple-site optical recording reported that a neural excitatory wave induced by somatic stimulation begins in a small area and propagates in the cortex. In the present study, to examine the possible role of this propagation wave in cortical reorganization, we analyzed the early changes in the spatio-temporal pattern of the sensory-evoked wave immediately, and 30 min, after nerve injury. The response to hypothenar stimulation, innervated by the ulnar nerve and adjoining the median nerve area, persisted after injury to either the ulnar or median nerve. Initially, we assessed changes in the response pattern at the focus. The latency increased after ulnar nerve injury, whereas no change was observed after median nerve injury. Similarly, no change was noted in the duration of the response signal with either nerve injury. Second, changes in the propagation wave pattern were analyzed. Ulnar nerve injury decreased the propagation velocity in the medial direction but the median nerve injury induced no changes. These results indicated that the propagation wave pattern is readily altered, even immediately after nerve injury, and suggest that this immediate change in the spatio-temporal pattern is one of the factors contributing to the cortical reorganization.


Assuntos
Traumatismos dos Nervos Periféricos , Córtex Somatossensorial , Animais , Membro Anterior , Nervo Mediano , Ratos , Nervo Ulnar
20.
Biotechnol Rep (Amst) ; 27: e00484, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32637344

RESUMO

Plants, being sessile, are exposed to an array of abiotic and biotic stresses. To adapt towards the changing environments, plants have evolved mechanisms that help in perceiving stress signals wherein phytohormones play a critical role. They have the ability to network enabling them to mediate defense responses. These endogenous signals, functioning at low doses are a part of all the developmental stages of the plant. Phytohormones possess specific functions as they interact with each other positively or negatively through cross-talks. In the present study, variations in the amount of phytohormones produced during biotic stress caused due to Magnoporthe grisea infection was studied through targeted metabolomics in both primed and control finger millet plants. Histochemical studies revealed callose deposition at the site of pathogen entry in the primed plants indicating its role during plant defense. The knowledge on the genetic makeup during infection was obtained by quantification of MAP kinase kinases 1 and 2 (MKK1/2) and lipoxygenase (LOX) genes, wherein the expression levels were high in the primed plants at 6 hours post-inoculation (hpi) compared to mock-control. Studies indicate the pivotal role of mitogen-activated protein kinase (MAPK or MAP kinases) during defense signalling. It is the first report to be studied on MAPK role in finger millet-blast disease response. Temporal accumulation of LOX enzyme along with its activity was also investigated due to its significant role during jasmonate synthesis in the plant cells. Results indicated its highest activity at 12 hpi. This is the first report on the variation in phytohormone levels in fingermillet - M. grisea pathosystem upon priming which were substantiated through salicylic acid (SA) pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA