Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biomedicines ; 12(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397896

RESUMO

Hemophagocytic syndrome is a key point in the pathogenesis of severe forms of multisystem inflammatory syndrome associated with COVID-19 in children (MIS-C). The factors associated with hemophagocytosis in patients with MIS-C were assessed in the present study of 94 boys and 64 girls ranging in age from 4 months to 17 years, each of whose HScore was calculated. In accordance with a previous analysis, patients with HScore ≤ 91 (n = 79) and HScore > 91 (n = 79) were compared. Patients with HScore > 91 had a higher frequency of symptoms such as cervical lymphadenopathy, dry cracked lips, bright mucous, erythema/swelling of hands and feet, peeling of fingers, edematous syndrome, hepatomegaly, splenomegaly, and hypotension/shock. They also had a higher erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and D-dimer levels, and a tendency to anemia, thrombocytopenia, and hypofibrinogenemia. They more often needed acetylsalicylic acid and biological treatment and were admitted to ICU in 70.9% of cases. Conclusion: The following signs of severe MIS-C were associated with HScore > 91: myocardial involvement, pericarditis, hypotension/shock, and ICU admission.

2.
Nat Commun ; 15(1): 1388, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360910

RESUMO

Most genotoxic anticancer agents fail in tumors with intact DNA repair. Therefore, trabectedin, anagent more toxic to cells with active DNA repair, specifically transcription-coupled nucleotide excision repair (TC-NER), provides therapeutic opportunities. To unlock the potential of trabectedin and inform its application in precision oncology, an understanding of the mechanism of the drug's TC-NER-dependent toxicity is needed. Here, we determine that abortive TC-NER of trabectedin-DNA adducts forms persistent single-strand breaks (SSBs) as the adducts block the second of the two sequential NER incisions. We map the 3'-hydroxyl groups of SSBs originating from the first NER incision at trabectedin lesions, recording TC-NER on a genome-wide scale. Trabectedin-induced SSBs primarily occur in transcribed strands of active genes and peak near transcription start sites. Frequent SSBs are also found outside gene bodies, connecting TC-NER to divergent transcription from promoters. This work advances the use of trabectedin for precision oncology and for studying TC-NER and transcription.


Assuntos
Reparo por Excisão , Neoplasias , Humanos , Trabectedina , Transcrição Gênica , Medicina de Precisão , Reparo do DNA , Dano ao DNA , DNA/genética , Nucleotídeos , Quebras de DNA
3.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014186

RESUMO

SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1 that depends on dNTP binding at allosteric sites and the concomitant tetramerization of the enzyme. The study reveals that SAMHD1 activation involves an inactive tetrameric intermediate with partial occupancy of the allosteric sites. The equilibrium between the inactive and active tetrameric states, which is coupled to cooperative binding/dissociation of at least two allosteric dNTP ligands, controls the dNTPase activity of the enzyme, which, in addition, depends on the identity of the dNTPs occupying the four allosteric sites of the active tetramer. We show how such allosteric regulation determines deoxynucleotide triphosphate levels established in the dynamic equilibria between dNTP production and SAMHD1-catalyzed depletion. Notably, the mechanism enables a distinctive functionality of SAMHD1, which we call facilitated dNTP depletion, whereby elevated biosynthesis of some dNTPs results in more efficient depletion of others. The regulatory relationship between the biosynthesis and depletion of different dNTPs sheds light on the emerging role of SAMHD1 in the biology of dNTP homeostasis with implications for HIV/AIDS, innate antiviral immunity, T cell disorders, telomere maintenance and therapeutic efficacy of nucleoside analogs.

4.
Mol Cell ; 83(20): 3679-3691.e8, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37797621

RESUMO

The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.


Assuntos
Neoplasias , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/metabolismo , Proteína BRCA1/metabolismo , Ubiquitinação , Histonas/genética , Histonas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Reparo de DNA por Recombinação , DNA , Reparo do DNA
5.
Biochem Soc Trans ; 51(3): 1307-1317, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37283472

RESUMO

Cells constantly accumulate mutations, which are caused by replication errors, as well as through the action of endogenous and exogenous DNA-damaging agents. Mutational patterns reflect the status of DNA repair machinery and the history of genotoxin exposure of a given cellular clone. Computationally derived mutational signatures can shed light on the origins of cancer. However, to understand the etiology of cancer signatures, they need to be compared with experimental signatures, which are obtained from the isogenic cell lines or organisms under controlled conditions. Experimental mutational patterns were instrumental in understanding the nature of signatures caused by mismatch repair and BRCA deficiencies. Here, we describe how different cell lines and model organisms were used in recent years to decipher mutational signatures observed in cancer genomes and provide examples of how data from different experimental systems complement and support each other.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Reparo do DNA , Dano ao DNA , Genoma
6.
Nat Commun ; 13(1): 7104, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402777

RESUMO

TRIM5α is an E3 ubiquitin ligase of the TRIM family that binds to the capsids of primate immunodeficiency viruses and blocks viral replication after cell entry. Here we investigate how synthesis of K63-linked polyubiquitin is upregulated by transient proximity of three RING domains in honeycomb-like assemblies formed by TRIM5α on the surface of the retroviral capsid. Proximity of three RINGs creates an asymmetric arrangement, in which two RINGs form a catalytic dimer that activates E2-ubiquitin conjugates and the disordered N-terminus of the third RING acts as the substrate for N-terminal autoubiquitylation. RING dimerization is required for activation of the E2s that contribute to the antiviral function of TRIM5α, UBE2W and heterodimeric UBE2N/V2, whereas the proximity of the third RING enhances the rate of each of the two distinct steps in the autoubiquitylation process: the initial N-terminal monoubiquitylation (priming) of TRIM5α by UBE2W and the subsequent extension of the K63-linked polyubiquitin chain by UBE2N/V2. The mechanism we describe explains how recognition of infection-associated epitope patterns by TRIM proteins initiates polyubiquitin-mediated downstream events in innate immunity.


Assuntos
Poliubiquitina , Ubiquitina-Proteína Ligases , Animais , Poliubiquitina/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Capsídeo/metabolismo , Ubiquitina/metabolismo
7.
J Biol Chem ; 297(4): 101170, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492268

RESUMO

Elevated intracellular levels of dNTPs have been shown to be a biochemical marker of cancer cells. Recently, a series of mutations in the multifunctional dNTP triphosphohydrolase (dNTPase), sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), have been reported in various cancers. Here, we investigated the structure and functions of SAMHD1 R366C/H mutants, found in colon cancer and leukemia. Unlike many other cancer-specific mutations, the SAMHD1 R366 mutations do not alter cellular protein levels of the enzyme. However, R366C/H mutant proteins exhibit a loss of dNTPase activity, and their X-ray structures demonstrate the absence of dGTP substrate in their active site, likely because of a loss of interaction with the γ-phosphate of the substrate. The R366C/H mutants failed to reduce intracellular dNTP levels and restrict HIV-1 replication, functions of SAMHD1 that are dependent on the ability of the enzyme to hydrolyze dNTPs. However, these mutants retain dNTPase-independent functions, including mediating dsDNA break repair, interacting with CtIP and cyclin A2, and suppressing innate immune responses. Finally, SAMHD1 degradation in human primary-activated/dividing CD4+ T cells further elevates cellular dNTP levels. This study suggests that the loss of SAMHD1 dNTPase activity induced by R366 mutations can mechanistically contribute to the elevated dNTP levels commonly found in cancer cells.


Assuntos
Neoplasias do Colo , Leucemia , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Proteína 1 com Domínio SAM e Domínio HD , Substituição de Aminoácidos , Linhagem Celular , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Ciclina A2/química , Ciclina A2/genética , Ciclina A2/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Leucemia/enzimologia , Leucemia/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Relação Estrutura-Atividade
8.
Nat Commun ; 12(1): 731, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531504

RESUMO

SAMHD1 impedes infection of myeloid cells and resting T lymphocytes by retroviruses, and the enzymatic activity of the protein-dephosphorylation of deoxynucleotide triphosphates (dNTPs)-implicates enzymatic dNTP depletion in innate antiviral immunity. Here we show that the allosteric binding sites of the enzyme are plastic and can accommodate oligonucleotides in place of the allosteric activators, GTP and dNTP. SAMHD1 displays a preference for oligonucleotides containing phosphorothioate bonds in the Rp configuration located 3' to G nucleotides (GpsN), the modification pattern that occurs in a mechanism of antiviral defense in prokaryotes. In the presence of GTP and dNTPs, binding of GpsN-containing oligonucleotides promotes formation of a distinct tetramer with mixed occupancy of the allosteric sites. Mutations that impair formation of the mixed-occupancy complex abolish the antiretroviral activity of SAMHD1, but not its ability to deplete dNTPs. The findings link nucleic acid binding to the antiretroviral activity of SAMHD1, shed light on the immunomodulatory effects of synthetic phosphorothioated oligonucleotides and raise questions about the role of nucleic acid phosphorothioation in human innate immunity.


Assuntos
Nucleotídeos/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Humanos , Imunidade Inata/genética , Imunidade Inata/fisiologia , Mutação/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética
9.
Biochemistry ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175491

RESUMO

ETS family transcription factors control development of different cell types in humans, whereas deregulation of these proteins leads to severe developmental syndromes and cancers. One of a few members of the ETS family that are known to act solely as repressors, ERF, is required for normal osteogenesis and hematopoiesis. Another important function of ERF is acting as a tumor suppressor by antagonizing oncogenic fusions involving other ETS family factors. The structure of ERF and the DNA binding properties specific to this protein have not been elucidated. In this study, we determined two crystal structures of the complexes of the DNA binding domain of ERF with DNA. In one, ERF is in a distinct dimeric form, with Cys72 in a reduced state. In the other, two dimers of ERF are assembled into a tetramer that is additionally locked by two Cys72-Cys72 disulfide bonds across the dimers. In the tetramer, the ERF molecules are bound to a pseudocontinuous DNA on the same DNA face at two GGAA binding sites on opposite strands. Sedimentation velocity analysis showed that this tetrameric assembly forms on continuous DNA containing such tandem sites spaced by 7 bp. Our bioinformatic analysis of three previously reported sets of ERF binding loci across entire genomes showed that these loci were enriched in such 7 bp spaced tandem sites. Taken together, these results strongly suggest that the observed tetrameric assembly is a functional state of ERF in the human cell.

10.
Angew Chem Int Ed Engl ; 59(2): 826-832, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31702856

RESUMO

MtmOIV and MtmW catalyze the final two reactions in the mithramycin (MTM) biosynthetic pathway, the Baeyer-Villiger opening of the fourth ring of premithramycin B (PMB), creating the C3 pentyl side chain, strictly followed by reduction of the distal keto group on the new side chain. Unexpectedly this results in a C2 stereoisomer of mithramycin, iso-mithramycin (iso-MTM). Iso-MTM undergoes a non-enzymatic isomerization to MTM catalyzed by Mg2+ ions. Crystal structures of MtmW and its complexes with co-substrate NADPH and PEG, suggest a catalytic mechanism of MtmW. The structures also show that a tetrameric assembly of this enzyme strikingly resembles the ring-shaped ß subunit of a vertebrate ion channel. We show that MtmW and MtmOIV form a complex in the presence of PMB and NADPH, presumably to hand over the unstable MtmOIV product to MtmW, yielding iso-MTM, as a potential self-resistance mechanism against MTM toxicity.


Assuntos
Produtos Biológicos/metabolismo , Plicamicina/biossíntese , Catálise
11.
RNA Biol ; 15(11): 1420-1432, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30362859

RESUMO

RNA binding proteins have emerged as critical oncogenic factors and potential targets in cancer therapy. In this study, we evaluated Musashi1 (Msi1) targeting as a strategy to treat glioblastoma (GBM); the most aggressive brain tumor type. Msi1 expression levels are often high in GBMs and other tumor types and correlate with poor clinical outcome. Moreover, Msi1 has been implicated in chemo- and radio-resistance. Msi1 modulates a range of cancer relevant processes and pathways and regulates the expression of stem cell markers and oncogenic factors via mRNA translation/stability. To identify Msi1 inhibitors capable of blocking its RNA binding function, we performed a ~ 25,000 compound fluorescence polarization screen. NMR and LSPR were used to confirm direct interaction between Msi1 and luteolin, the leading compound. Luteolin displayed strong interaction with Msi1 RNA binding domain 1 (RBD1). As a likely consequence of this interaction, we observed via western and luciferase assays that luteolin treatment diminished Msi1 positive impact on the expression of pro-oncogenic target genes. We tested the effect of luteolin treatment on GBM cells and showed that it reduced proliferation, cell viability, colony formation, migration and invasion of U251 and U343 GBM cells. Luteolin also decreased the proliferation of patient-derived glioma initiating cells (GICs) and tumor-organoids but did not affect normal astrocytes. Finally, we demonstrated the value of combined treatments with luteolin and olaparib (PARP inhibitor) or ionizing radiation (IR). Our results show that luteolin functions as an inhibitor of Msi1 and demonstrates its potential use in GBM therapy.


Assuntos
Glioblastoma/tratamento farmacológico , Luteolina/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Luteolina/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fenótipo , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , RNA/química , RNA/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Radiação Ionizante , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Cell Rep ; 24(4): 815-823, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30044979

RESUMO

SAMHD1 is a dNTP triphosphohydrolase (dNTPase) that impairs retroviral replication in a subset of non-cycling immune cells. Here we show that SAMHD1 is a redox-sensitive enzyme and identify three redox-active cysteines within the protein: C341, C350, and C522. The three cysteines reside near one another and the allosteric nucleotide binding site. Mutations C341S and C522S abolish the ability of SAMHD1 to restrict HIV replication, whereas the C350S mutant remains restriction competent. The C522S mutation makes the protein resistant to inhibition by hydrogen peroxide but has no effect on the tetramerization-dependent dNTPase activity of SAMHD1 in vitro or on the ability of SAMHD1 to deplete cellular dNTPs. Our results reveal that enzymatic activation of SAMHD1 via nucleotide-dependent tetramerization is not sufficient for the establishment of the antiviral state and that retroviral restriction depends on the ability of the protein to undergo redox transformations.


Assuntos
Cisteína/metabolismo , Retroviridae/fisiologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral/fisiologia , Cisteína/genética , Células HEK293 , Humanos , Mutação , Oxirredução , Proteína 1 com Domínio SAM e Domínio HD/genética , Células U937
13.
Rep Prog Phys ; 81(2): 024401, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29303118

RESUMO

In this report we discuss the dynamical response of heavy quantum impurities immersed in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time domain allows one to identify interaction regimes that are characterized by distinct many-body dynamics. From this theoretical study a picture emerges in which impurity dynamics is universal on essentially all time scales, and where the high-frequency few-body response is related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. Our theoretical description relies on different and complementary approaches: functional determinants give an exact numerical solution for time- and frequency-resolved responses, bosonization provides accurate analytical expressions at low temperatures, and the theory of Toeplitz determinants allows one to analytically predict response up to high temperatures. Using these approaches we predict the thermal decoherence rate of the fermionic system and prove that within the considered model the fastest rate of long-time decoherence is given by [Formula: see text]. We show that Feshbach resonances in cold atomic systems give access to new interaction regimes where quantum effects can prevail even in the thermal regime of many-body dynamics. The key signature of this phenomenon is a crossover between different exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the orthogonality catastrophe is experimentally observable up to temperatures [Formula: see text] where it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight and we review how this phenomenon is related to the physics of heavy ions in liquid [Formula: see text]He and the formation of Fermi polarons. The presented results are in excellent agreement with recent experiments on LiK mixtures, and we predict several new phenomena that can be tested using currently available experimental technology.

14.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187540

RESUMO

Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity (KD of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity (KD of ∼10 µM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition.IMPORTANCE Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly through its cyclophilin A domain and therefore was thought to act independently of higher-order assembly. Here, we show that TRIMCyp shares the assembly properties of TRIM5α and that both forms of TRIM5 use the same mechanism of hexagonal lattice formation to promote viral recognition and restriction.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , HIV-1/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Fatores de Restrição Antivirais , Aotidae , Proteínas do Capsídeo/ultraestrutura , Proteínas de Transporte/genética , HIV-1/metabolismo , Células HeLa , Humanos , Macaca mulatta , Domínios Proteicos , Multimerização Proteica , Proteínas/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Nucleus ; 8(3): 261-267, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28453390

RESUMO

Cohesin is a ring-shaped protein complex which comprises the Smc1, Smc3 and Scc1 subunits. It topologically embraces chromosomal DNA to connect sister chromatids and stabilize chromatin loops. It is required for proper chromosomal segregation, DNA repair and transcriptional regulation. We have recently reported that cohesin rings can adopt a "collapsed" rod-like conformation which is driven by the interaction between the Smc1 and Smc3 coiled coil arms and is regulated by post-translational modifications. The "collapsed" conformation plays a role in cohesin ring assembly and its loading on the DNA. Here we speculate about the mechanism of cohesin's conformational transitions in relation to its loading on the DNA and draw parallels with other Smc-like complexes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , DNA/genética , DNA/metabolismo , Humanos , Hidrólise , Conformação Proteica , Processamento de Proteína Pós-Traducional , Coesinas
16.
Hum Mutat ; 38(6): 658-668, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28229507

RESUMO

Mutations in the human SAMHD1 gene are known to correlate with the development of the Aicardi-Goutières syndrome (AGS), which is an inflammatory encephalopathy that exhibits neurological dysfunction characterized by increased production of type I interferon (IFN); this evidence has led to the concept that the SAMHD1 protein negatively regulates the type I IFN response. Additionally, the SAMHD1 protein has been shown to prevent efficient HIV-1 infection of macrophages, dendritic cells, and resting CD4+ T cells. To gain insights on the SAMHD1 molecular determinants that are responsible for the deregulated production of type I IFN, we explored the biochemical, cellular, and antiviral properties of human SAMHD1 mutants known to correlate with the development of AGS. Most of the studied SAMHD1 AGS mutants exhibit defects in the ability to oligomerize, decrease the levels of cellular deoxynucleotide triphosphates in human cells, localize exclusively to the nucleus, and restrict HIV-1 infection. At least half of the tested variants preserved the ability to be degraded by the lentiviral protein Vpx, and all of them interacted with RNA. Our investigations revealed that the SAMHD1 AGS variant p.G209S preserve all tested biochemical, cellular, and antiviral properties, suggesting that this residue is a determinant for the ability of SAMHD1 to negatively regulate the type I IFN response in human patients with AGS. Overall, our work genetically separated the ability of SAMHD1 to negatively regulate the type I IFN response from its ability to restrict HIV-1.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Infecções por HIV/genética , Interferon Tipo I/genética , Malformações do Sistema Nervoso/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Doenças Autoimunes do Sistema Nervoso/complicações , Doenças Autoimunes do Sistema Nervoso/virologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Predisposição Genética para Doença , Infecções por HIV/complicações , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Lentivirus/genética , Mutação , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/virologia
17.
Chem Biol Drug Des ; 89(4): 608-618, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27748043

RESUMO

The small-molecule 6-(tert-butyl)-4-phenyl-4-(trifluoromethyl)-1H,3H-1,3,5-triazin-2-one (3G11) inhibits HIV-1 replication in the human T cell line MT-2. Here, we showed that 3G11 specifically and potently blocks HIV-1 infection. By contrast, 3G11 did not block other retroviruses such as HIV-2, simian immunodeficiency virus (SIVmac ), bovine immunodeficiency virus, feline immunodeficiency virus, equine infectious anemia virus, N-tropic murine leukemia virus, B-tropic murine leukemia virus, and Moloney murine leukemia virus. Analysis of DNA metabolism by real-time PCR revealed that 3G11 blocks the formation of HIV-1 late reverse transcripts during infection prior to the first-strand transfer step. In agreement, an in vitro assay revealed that 3G11 blocks the enzymatic activity of HIV-1 reverse transcriptase as strong as nevirapine. Docking of 3G11 to the HIV-1 reverse transcriptase enzyme suggested a direct interaction between residue L100 and 3G11. In agreement, an HIV-1 virus bearing the reverse transcriptase change L100I renders HIV-1 resistant to 3G11, which suggested that the reverse transcriptase enzyme is the viral determinant for HIV-1 sensitivity to 3G11. Although NMR experiments revealed that 3G11 binds to the HIV-1 capsid, functional experiments suggested that capsid is not the viral determinant for sensitivity to 3G11. Overall, we described a novel non-nucleoside reverse transcription inhibitor that blocks HIV-1 infection.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Inibidores da Transcriptase Reversa/farmacologia , Triazinas/farmacologia , Animais , Linhagem Celular , Cães , HIV-1/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Inibidores da Transcriptase Reversa/química , Triazinas/química
18.
J Biol Chem ; 291(51): 26332-26342, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27815502

RESUMO

SAMHD1 (sterile α motif and HD domain-containing protein 1) is a mammalian protein that regulates intracellular dNTP levels through its hydrolysis of dNTPs. SAMHD1 functions as an important retroviral restriction factor through a mechanism relying on its dNTPase activity. We and others have reported that human SAMHD1 interacts with the cell cycle regulatory proteins cyclin A, CDK1, and CDK2, which mediates phosphorylation of SAMHD1 at threonine 592, a post-translational modification that has been implicated in abrogating SAMHD1 restriction function and ability to form stable tetramers. Utilizing co-immunoprecipitation and co-localization approaches, we show that endogenous SAMHD1 is able to interact with the cyclin A-CDK1-CDK2 complexin monocytic THP-1 cells and primary monocyte-derived macrophages. Sequence analysis of SAMHD1 identifies a putative cyclin-binding motif found in many cyclin-CDK complex substrates. Using a mutagenesis-based approach, we demonstrate that the conserved residues in the putative cyclin-binding motif are important for protein expression, protein half-life, and optimal phosphorylation of SAMHD1 at Thr592 Furthermore, we observed that SAMHD1 mutants of the cyclin-binding motif mislocalized to a nuclear compartment and had reduced ability to interact with cyclin A-CDK complexes and to form the tetramer. These findings help define the mechanisms by which SAMHD1 is phosphorylated and suggest the contribution of cyclin binding to SAMHD1 expression and stability in dividing cells.


Assuntos
Divisão Celular/fisiologia , Macrófagos/metabolismo , Monócitos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/biossíntese , Processamento de Proteína Pós-Traducional/fisiologia , Proteína Quinase CDC2 , Linhagem Celular Tumoral , Ciclina A/genética , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Humanos , Macrófagos/citologia , Monócitos/citologia , Proteínas Monoméricas de Ligação ao GTP/genética , Fosforilação/fisiologia , Proteína 1 com Domínio SAM e Domínio HD
19.
J Immunol ; 197(10): 3792-3805, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742832

RESUMO

IgG autoantibodies mediate pathology in systemic lupus patients and lupus-prone mice. In this study, we showed that the class-switched IgG autoantibody response in MRL/Faslpr/lpr and C57/Sle1Sle2Sle2 mice was blocked by the CID 1067700 compound, which specifically targeted Ras-related in brain 7 (Rab7), an endosome-localized small GTPase that was upregulated in activated human and mouse lupus B cells, leading to prevention of disease development and extension of lifespan. These were associated with decreased IgG-expressing B cells and plasma cells, but unchanged numbers and functions of myeloid cells and T cells. The Rab7 inhibitor suppressed T cell-dependent and T cell-independent Ab responses, but it did not affect T cell-mediated clearance of Chlamydia infection, consistent with a B cell-specific role of Rab7. Indeed, B cells and plasma cells were inherently sensitive to Rab7 gene knockout or Rab7 activity inhibition in class switching and survival, respectively, whereas proliferation/survival of B cells and generation of plasma cells were not affected. Impairment of NF-κB activation upon Rab7 inhibition, together with the rescue of B cell class switching and plasma cell survival by enforced NF-κB activation, indicated that Rab7 mediates these processes by promoting NF-κB activation, likely through signal transduction on intracellular membrane structures. Thus, a single Rab7-inhibiting small molecule can target two stages of B cell differentiation to dampen the pathogenic autoantibody response in lupus.


Assuntos
Autoanticorpos/imunologia , Linfócitos B/imunologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Switching de Imunoglobulina/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/imunologia , Plasmócitos/fisiologia , Tioureia/análogos & derivados , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Infecções por Chlamydia/imunologia , Feminino , Regulação da Expressão Gênica , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos MRL lpr , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Linfócitos T/imunologia , Tioureia/farmacologia , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/imunologia , proteínas de unión al GTP Rab7
20.
Structure ; 24(11): 1991-1999, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27692962

RESUMO

The cohesin ring, which is composed of the Smc1, Smc3, and Scc1 subunits, topologically embraces two sister chromatids from S phase until anaphase to ensure their precise segregation to the daughter cells. The opening of the ring is required for its loading on the chromosomes and unloading by the action of Wpl1 protein. Both loading and unloading are dependent on ATP hydrolysis by the Smc1 and Smc3 "head" domains, which engage to form two composite ATPase sites. Based on the available structures, we modeled the Saccharomyces cerevisiae Smc1/Smc3 head heterodimer and discovered that the Smc1/Smc3 interfaces at the two ATPase sites differ in the extent of protein contacts and stability after ATP hydrolysis. We identified smc1 and smc3 mutations that disrupt one of the interfaces and block the Wpl1-mediated release of cohesin from DNA. Thus, we provide structural insights into how the cohesin heads engage with each other.


Assuntos
Acetiltransferases/genética , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dimerização , Hidrólise , Modelos Moleculares , Mutação , Proteínas Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA