Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Biol Chem ; 300(6): 107368, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750793

RESUMO

Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.

2.
Immunity ; 56(12): 2719-2735.e7, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039966

RESUMO

Commensal microbes induce cytokine-producing effector tissue-resident CD4+ T cells, but the function of these T cells in mucosal homeostasis is not well understood. Here, we report that commensal-specific intestinal Th17 cells possess an anti-inflammatory phenotype marked by expression of interleukin (IL)-10 and co-inhibitory receptors. The anti-inflammatory phenotype of gut-resident commensal-specific Th17 cells was driven by the transcription factor c-MAF. IL-10-producing commensal-specific Th17 cells were heterogeneous and derived from a TCF1+ gut-resident progenitor Th17 cell population. Th17 cells acquired IL-10 expression and anti-inflammatory phenotype in the small-intestinal lamina propria. IL-10 production by CD4+ T cells and IL-10 signaling in intestinal macrophages drove IL-10 expression by commensal-specific Th17 cells. Intestinal commensal-specific Th17 cells possessed immunoregulatory functions and curbed effector T cell activity in vitro and in vivo in an IL-10-dependent and c-MAF-dependent manner. Our results suggest that tissue-resident commensal-specific Th17 cells perform regulatory functions in mucosal homeostasis.


Assuntos
Microbioma Gastrointestinal , Células Th17 , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Anti-Inflamatórios
3.
Genes Dev ; 37(11-12): 474-489, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433636

RESUMO

In addition to the main, protein-coding, open reading frame (mORF), many eukaryotic mRNAs contain upstream ORFs (uORFs) initiated at AUG or near-cognate codons residing 5' of the mORF start site. Whereas translation of uORFs generally represses translation of the mORFs, a subset of uORFs serves as a nexus for regulating translation of the mORF. In this review, we summarize the mechanisms by which uORFs can repress or stimulate mRNA translation, highlight uORF-mediated translational repression involving ribosome queuing, and critically evaluate recently described alternatives to the delayed reinitiation model for uORF-mediated regulation of the GCN4/ATF4 mRNAs.


Assuntos
Biossíntese de Proteínas , Ribossomos , Códon de Iniciação/genética , Códon/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fases de Leitura Aberta/genética
4.
J Ethnopharmacol ; 314: 116508, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37264880

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cotinus coggygria has a number of applications in traditional medicine most of which are connected with its anti-inflammatory and anti-oxidant properties. Since inflammation and oxidative stress are recognized as triggering factors for cancer, anti-cancer activity has also been documented and the possible mechanisms of this activity are under investigation. Important components of C. coggygria extracts are shown to be hydrolysable gallotannins of which pentagalloyl-O-glucose has been studied in details. This compound inhibits various enzymes including prolyl oligopeptidase which is involved in tumorigenesis and tumour growth. According to our pilot studies, oligo-O-galloylglucoses with more than five galloyl residues are also presented in the herb of Bulgarian origin, but their activities have not been examined. AIM OF THE STUDY: To establish an extraction method by which it is possible to concentrate high molecular hydrolysable gallotannins from dried leaves of Cotinus coggygria and to determine their inhibitory properties towards prolyl oligopeptidase and fibroblast activation protein α. MATERIALS AND METHODS: Dried leaves of C. coggygria were extracted using different solvents in single-phase or biphasic systems under various extraction conditions. Main compounds of the extracts were identified by using high performance liquid chromatography and liquid chromatography - high resolution mass spectrometry. The extracts' inhibitory properties towards prolyl oligopeptidase and fibroblast activation protein α were studied on recombinant human enzymes by enzyme kinetic analyses using a fluorogenic substrate. RESULTS: Ethyl acetate/water (pH 3.0) extraction of dried plant leaves proved to be the most efficient method for isolation of high molecular hydrolysable gallotannins which can be further concentrated by precipitation of dicyclohexylammonium salts in ethyl acetate. The main components of those extracts were oligo-O-galloyl glucoses with more than five gallic acid residues. They were shown to inhibit both enzymes studied but were about 30 times more effective inhibitors of prolyl oligopeptidase. CONCLUSIONS: C. coggygria from Bulgarian origin is shown to possess a substantial quantity of oligo-O-galloyl glucoses with more than five gallic acid residues which has not been described thus far in the same herb from other sources. An extraction method useable for concentrating those compounds is established. They are found to inhibit prolyl oligopeptidase with a very good selectivity to fibroblast activation protein α. The previously described antitumor activity of this plant may be at least in part due to the inhibition of the above enzymes which has been shown to participate in the genesis and development of various types of tumors.


Assuntos
Anacardiaceae , Taninos Hidrolisáveis , Humanos , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/análise , Prolina , Peptídeo Hidrolases , Prolil Oligopeptidases , Anacardiaceae/química , Ácido Gálico/análise , Extratos Vegetais/química , Folhas de Planta/química
5.
Nucleic Acids Res ; 51(13): 6899-6913, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246715

RESUMO

Diphthamide (DPH), a conserved amino acid modification on eukaryotic translation elongation factor eEF2, is synthesized via a complex, multi-enzyme pathway. While DPH is non-essential for cell viability and its function has not been resolved, diphtheria and other bacterial toxins ADP-ribosylate DPH to inhibit translation. Characterizing Saccharomyces cerevisiae mutants that lack DPH or show synthetic growth defects in the absence of DPH, we show that loss of DPH increases resistance to the fungal translation inhibitor sordarin and increases -1 ribosomal frameshifting at non-programmed sites during normal translation elongation and at viral programmed frameshifting sites. Ribosome profiling of yeast and mammalian cells lacking DPH reveals increased ribosomal drop-off during elongation, and removal of out-of-frame stop codons restores ribosomal processivity on the ultralong yeast MDN1 mRNA. Finally, we show that ADP-ribosylation of DPH impairs the productive binding of eEF2 to elongating ribosomes. Our results reveal that loss of DPH impairs the fidelity of translocation during translation elongation resulting in increased rates of ribosomal frameshifting throughout elongation and leading to premature termination at out-of-frame stop codons. We propose that the costly, yet non-essential, DPH modification has been conserved through evolution to maintain translational fidelity despite being a target for inactivation by bacterial toxins.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Fator 2 de Elongação de Peptídeos , Saccharomyces cerevisiae , Animais , Toxinas Bacterianas/metabolismo , Códon de Terminação/metabolismo , Mamíferos/genética , Fator 2 de Elongação de Peptídeos/química , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo
6.
Nat Commun ; 14(1): 2758, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179334

RESUMO

Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD. To unravel their functions and regulation, we build cryo-EM based TFIIH models in transcription- and NER-competent states. Using simulations and graph-theoretical analysis methods, we reveal TFIIH's global motions, define TFIIH partitioning into dynamic communities and show how TFIIH reshapes itself and self-regulates depending on functional context. Our study uncovers an internal regulatory mechanism that switches XPB and XPD activities making them mutually exclusive between NER and transcription initiation. By sequentially coordinating the XPB and XPD DNA-unwinding activities, the switch ensures precise DNA incision in NER. Mapping TFIIH disease mutations onto network models reveals clustering into distinct mechanistic classes, affecting translocase functions, protein interactions and interface dynamics.


Assuntos
DNA Helicases , Reparo do DNA , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Conformação Molecular , DNA/metabolismo , Transcrição Gênica
7.
Nucleic Acids Res ; 51(3): 1019-1033, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36477609

RESUMO

Nucleotide excision repair (NER) is critical for removing bulky DNA base lesions and avoiding diseases. NER couples lesion recognition by XPC to strand separation by XPB and XPD ATPases, followed by lesion excision by XPF and XPG nucleases. Here, we describe key regulatory mechanisms and roles of XPG for and beyond its cleavage activity. Strikingly, by combing single-molecule imaging and bulk cleavage assays, we found that XPG binding to the 7-subunit TFIIH core (coreTFIIH) stimulates coreTFIIH-dependent double-strand (ds)DNA unwinding 10-fold, and XPG-dependent DNA cleavage by up to 700-fold. Simultaneous monitoring of rates for coreTFIIH single-stranded (ss)DNA translocation and dsDNA unwinding showed XPG acts by switching ssDNA translocation to dsDNA unwinding as a likely committed step. Pertinent to the NER pathway regulation, XPG incision activity is suppressed during coreTFIIH translocation on DNA but is licensed when coreTFIIH stalls at the lesion or when ATP hydrolysis is blocked. Moreover, ≥15 nucleotides of 5'-ssDNA is a prerequisite for efficient translocation and incision. Our results unveil a paired coordination mechanism in which key lesion scanning and DNA incision steps are sequentially coordinated, and damaged patch removal is only licensed after generation of ≥15 nucleotides of 5'-ssDNA, ensuring the correct ssDNA bubble size before cleavage.


Nucleotide excision repair (NER) removes bulky DNA lesions and is thereby crucial in maintaining transcription and genomic integrity. Here, the authors show a dual function for the XPG nuclease that is critical for finding and excising the damage. During the separation of the damage-containing strand from the undamaged strand, XPG stimulates TFIIH dependent dsDNA unwinding 10 fold. In return, when TFIIH stalls at the damage it stimulates XPG nuclease activity 700 fold. Remarkably, this mutually exclusive coordination requires a bubble longer than 15 nucleotides. This study addressees why a bubble of a certain size is needed to facilitate NER and why XPG is recruited at the beginning of NER when its endonucleolytic activity is required at the very end.


Assuntos
Reparo do DNA , Fator de Transcrição TFIIH , DNA/metabolismo , Dano ao DNA , DNA de Cadeia Simples , Endonucleases/metabolismo , Nucleotídeos , Fator de Transcrição TFIIH/metabolismo
8.
Cell ; 185(19): 3501-3519.e20, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041436

RESUMO

How intestinal microbes regulate metabolic syndrome is incompletely understood. We show that intestinal microbiota protects against development of obesity, metabolic syndrome, and pre-diabetic phenotypes by inducing commensal-specific Th17 cells. High-fat, high-sugar diet promoted metabolic disease by depleting Th17-inducing microbes, and recovery of commensal Th17 cells restored protection. Microbiota-induced Th17 cells afforded protection by regulating lipid absorption across intestinal epithelium in an IL-17-dependent manner. Diet-induced loss of protective Th17 cells was mediated by the presence of sugar. Eliminating sugar from high-fat diets protected mice from obesity and metabolic syndrome in a manner dependent on commensal-specific Th17 cells. Sugar and ILC3 promoted outgrowth of Faecalibaculum rodentium that displaced Th17-inducing microbiota. These results define dietary and microbiota factors posing risk for metabolic syndrome. They also define a microbiota-dependent mechanism for immuno-pathogenicity of dietary sugar and highlight an elaborate interaction between diet, microbiota, and intestinal immunity in regulation of metabolic disorders.


Assuntos
Síndrome Metabólica , Microbiota , Animais , Dieta Hiperlipídica , Açúcares da Dieta , Interleucina-17 , Mucosa Intestinal , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Células Th17
9.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217614

RESUMO

Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox (Hox) gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 Hox genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of Hox mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements. We show that the conserved uORFs inhibit Hox reporter expression and that altering the stringency of start codon selection by overexpressing eIF1 or eIF5 modulates the expression of Hox reporters. We also show that modifying ribosome homeostasis by depleting a large ribosomal subunit protein or treating cells with sublethal concentrations of puromycin leads to lower stringency of start codon selection. Thus, altering global translation can confer gene-specific effects through altered start codon selection stringency.


Assuntos
Códon de Iniciação , Evolução Molecular , Genes Homeobox , Biossíntese de Proteínas , RNA Mensageiro/genética , Animais , Camundongos , Fases de Leitura Aberta
10.
Annu Rev Immunol ; 40: 559-587, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35113732

RESUMO

The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.


Assuntos
Microbiota , Linfócitos T , Animais , Humanos
11.
Nat Commun ; 12(1): 7001, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853308

RESUMO

Transcription-coupled repair is essential for the removal of DNA lesions from the transcribed genome. The pathway is initiated by CSB protein binding to stalled RNA polymerase II. Mutations impairing CSB function cause severe genetic disease. Yet, the ATP-dependent mechanism by which CSB powers RNA polymerase to bypass certain lesions while triggering excision of others is incompletely understood. Here we build structural models of RNA polymerase II bound to the yeast CSB ortholog Rad26 in nucleotide-free and bound states. This enables simulations and graph-theoretical analyses to define partitioning of this complex into dynamic communities and delineate how its structural elements function together to remodel DNA. We identify an allosteric pathway coupling motions of the Rad26 ATPase modules to changes in RNA polymerase and DNA to unveil a structural mechanism for CSB-assisted progression past less bulky lesions. Our models allow functional interpretation of the effects of Cockayne syndrome disease mutations.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Reparo do DNA , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Adenosina Trifosfatases , Síndrome de Cockayne/genética , Biologia Computacional , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , Modelos Moleculares , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/genética
13.
Mol Cell ; 81(19): 3904-3918.e6, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375581

RESUMO

Polyamines, small organic polycations, are essential for cell viability, and their physiological levels are homeostatically maintained by post-transcriptional regulation of key biosynthetic enzymes. In addition to de novo synthesis, cells can also take up polyamines; however, identifying cellular polyamine transporters has been challenging. Here we show that the S. cerevisiae HOL1 mRNA is under translational control by polyamines, and we reveal that the encoded membrane transporter Hol1 is a high-affinity polyamine transporter and is required for yeast growth under limiting polyamine conditions. Moreover, we show that polyamine inhibition of the translation factor eIF5A impairs translation termination at a Pro-Ser-stop motif in a conserved upstream open reading frame on the HOL1 mRNA to repress Hol1 synthesis under conditions of elevated polyamines. Our findings reveal that polyamine transport, like polyamine biosynthesis, is under translational autoregulation by polyamines in yeast, highlighting the extensive control cells impose on polyamine levels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Poliaminas/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Fases de Leitura Aberta , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fator de Iniciação de Tradução Eucariótico 5A
14.
RSC Med Chem ; 12(1): 95-102, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046601

RESUMO

Protein arginine methyltransferases (PRMTs) are essential epigenetic and post-translational regulators in eukaryotic organisms. Dysregulation of PRMTs is intimately related to multiple types of human diseases, particularly cancer. Based on the previously reported PRMT1 inhibitors bearing the diamidine pharmacophore, we performed virtual screening to identify additional amidine-associated structural analogs. Subsequent enzymatic tests and characterization led to the discovery of a top lead K313 (2-(4-((4-carbamimidoylphenyl)amino)phenyl)-1H-indole-6-carboximidamide), which possessed low-micromolar potency with biochemical IC50 of 2.6 µM for human PRMT1. Limited selectivity was observed over some other PRMT isoforms such as CARM1 and PRMT7. Molecular modeling and inhibition pattern studies suggest that K313 is a nonclassic noncompetitive inhibitor to PRMT1. K313 significantly inhibited cell proliferation and reduced the arginine asymmetric dimethylation level in the leukaemia cancer cells.

15.
DNA Repair (Amst) ; 96: 102972, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007515

RESUMO

Critical for transcription initiation and bulky lesion DNA repair, TFIIH provides an exemplary system to connect molecular mechanisms to biological outcomes due to its strong genetic links to different specific human diseases. Recent advances in structural and computational biology provide a unique opportunity to re-examine biologically relevant molecular structures and develop possible mechanistic insights for the large dynamic TFIIH complex. TFIIH presents many puzzles involving how its two SF2 helicase family enzymes, XPB and XPD, function in transcription initiation and repair: how do they initiate transcription, detect and verify DNA damage, select the damaged strand for incision, coordinate repair with transcription and cell cycle through Cdk-activating-kinase (CAK) signaling, and result in very different specific human diseases associated with cancer, aging, and development from single missense mutations? By joining analyses of breakthrough cryo-electron microscopy (cryo-EM) structures and advanced computation with data from biochemistry and human genetics, we develop unified concepts and molecular level understanding for TFIIH functions with a focus on structural mechanisms. We provocatively consider that TFIIH may have first evolved from evolutionary pressure for TCR to resolve arrested transcription blocks to DNA replication and later added its key roles in transcription initiation and global DNA repair. We anticipate that this level of mechanistic information will have significant impact on thinking about TFIIH, laying a robust foundation suitable to develop new paradigms for DNA transcription initiation and repair along with insights into disease prevention, susceptibility, diagnosis and interventions.


Assuntos
Dano ao DNA , Reparo do DNA , Fator de Transcrição TFIIH/metabolismo , Iniciação da Transcrição Genética , DNA/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Fator de Transcrição TFIIH/química , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
16.
Nat Commun ; 11(1): 5379, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097731

RESUMO

Proofreading by replicative DNA polymerases is a fundamental mechanism ensuring DNA replication fidelity. In proofreading, mis-incorporated nucleotides are excised through the 3'-5' exonuclease activity of the DNA polymerase holoenzyme. The exonuclease site is distal from the polymerization site, imposing stringent structural and kinetic requirements for efficient primer strand transfer. Yet, the molecular mechanism of this transfer is not known. Here we employ molecular simulations using recent cryo-EM structures and biochemical analyses to delineate an optimal free energy path connecting the polymerization and exonuclease states of E. coli replicative DNA polymerase Pol III. We identify structures for all intermediates, in which the transitioning primer strand is stabilized by conserved Pol III residues along the fingers, thumb and exonuclease domains. We demonstrate switching kinetics on a tens of milliseconds timescale and unveil a complete pol-to-exo switching mechanism, validated by targeted mutational experiments.


Assuntos
Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Polimerização , DNA/química , DNA Polimerase III/metabolismo , Primers do DNA , DNA Polimerase Dirigida por DNA/química , Escherichia coli/metabolismo , Exonucleases/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica
17.
Annu Rev Genet ; 54: 237-264, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32870728

RESUMO

Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.


Assuntos
Fases de Leitura Aberta/genética , Peptídeos/genética , Biossíntese de Proteínas/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , RNA Mensageiro/genética , Ribossomos/genética
18.
Proc Natl Acad Sci U S A ; 117(30): 17747-17756, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669428

RESUMO

DNA replication origins serve as sites of replicative helicase loading. In all eukaryotes, the six-subunit origin recognition complex (Orc1-6; ORC) recognizes the replication origin. During late M-phase of the cell-cycle, Cdc6 binds to ORC and the ORC-Cdc6 complex loads in a multistep reaction and, with the help of Cdt1, the core Mcm2-7 helicase onto DNA. A key intermediate is the ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) complex in which DNA has been already inserted into the central channel of Mcm2-7. Until now, it has been unclear how the origin DNA is guided by ORC-Cdc6 and inserted into the Mcm2-7 hexamer. Here, we truncated the C-terminal winged-helix-domain (WHD) of Mcm6 to slow down the loading reaction, thereby capturing two loading intermediates prior to DNA insertion in budding yeast. In "semi-attached OCCM," the Mcm3 and Mcm7 WHDs latch onto ORC-Cdc6 while the main body of the Mcm2-7 hexamer is not connected. In "pre-insertion OCCM," the main body of Mcm2-7 docks onto ORC-Cdc6, and the origin DNA is bent and positioned adjacent to the open DNA entry gate, poised for insertion, at the Mcm2-Mcm5 interface. We used molecular simulations to reveal the dynamic transition from preloading conformers to the loaded conformers in which the loading of Mcm2-7 on DNA is complete and the DNA entry gate is fully closed. Our work provides multiple molecular insights into a key event of eukaryotic DNA replication.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Componente 6 do Complexo de Manutenção de Minicromossomo/química , Componente 6 do Complexo de Manutenção de Minicromossomo/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexo de Reconhecimento de Origem , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
19.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686657

RESUMO

The regulatory mechanisms enabling the intestinal epithelium to maintain a high degree of regenerative capacity during mucosal injury remain unclear. Ex vivo survival and clonogenicity of intestinal stem cells (ISCs) strictly required growth response mediated by cell division control 42 (Cdc42) and Cdc42-deficient enteroids to undergo rapid apoptosis. Mechanistically, Cdc42 engaging with EGFR was required for EGF-stimulated, receptor-mediated endocytosis and sufficient to promote MAPK signaling. Proteomics and kinase analysis revealed that a physiologically, but nonconventionally, spliced Cdc42 variant 2 (V2) exhibited stronger MAPK-activating capability. Human CDC42-V2 is transcriptionally elevated in some colon tumor tissues. Accordingly, mice engineered to overexpress Cdc42-V2 in intestinal epithelium showed elevated MAPK signaling, enhanced regeneration, and reduced mucosal damage in response to irradiation. Overproducing Cdc42-V2 specifically in mouse ISCs enhanced intestinal regeneration following injury. Thus, the intrinsic Cdc42-MAPK program is required for intestinal epithelial regeneration, and elevating this signaling cascade is capable of initiating protection from genotoxic injury.


Assuntos
Receptores ErbB/metabolismo , Mucosa Intestinal/fisiologia , Regeneração/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Processamento Alternativo , Animais , Sobrevivência Celular , Endocitose/fisiologia , Células HEK293 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Camundongos Transgênicos , Proteína cdc42 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA