Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38731646

RESUMO

Crystalline cerium(III) phosphate (CePO4), cerium(IV) phosphates, and nanocrystalline ceria are considered to be promising components of sunscreen cosmetics. This paper reports on a study in which, for the first time, a quantitative comparative analysis was performed of the UV-shielding properties of CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and CePO4/CeO2 composites. Both the sun protection factor and protection factor against UV-A radiation of the materials were determined. Ce(PO4)(HPO4)0.5(H2O)0.5 was shown to have a sun protection factor of 2.9, which is comparable with that of nanocrystalline ceria and three times higher than the sun protection factor of CePO4. Composites containing both cerium dioxide and CePO4 demonstrated higher sun protection factors (up to 1.8) than individual CePO4. When compared with the TiO2 Aeroxide P25 reference sample, cerium(III) and cerium(IV) phosphates demonstrated negligible photocatalytic activity. A cytotoxicity analysis performed using two mammalian cell lines, hMSc and NCTC L929, showed that CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and nanocrystalline ceria were all non-toxic. The results of this comparative study indicate that cerium(IV) phosphate Ce(PO4)(HPO4)0.5(H2O)0.5 is more advantageous for use in sunscreens than either cerium(III) phosphate or CePO4/CeO2 composites, due to its improved UV-shielding properties and low photocatalytic activity.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727363

RESUMO

Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.

3.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611913

RESUMO

The synthesis of multicomponent and high-entropy compounds has become a rapidly developing field in advanced inorganic chemistry, making it possible to combine the properties of multiple elements in a single phase. This paper reports on the synthesis of a series of novel high-entropy layered rare earth hydroxychlorides, namely, (Sm,Eu,Gd,Y,Er)2(OH)5Cl, (Eu,Gd,Tb,Y,Er)2(OH)5Cl, (Eu,Gd,Dy,Y,Er)2(OH)5Cl, and (Eu,Gd,Y,Er,Yb)2(OH)5Cl, using a homogeneous hydrolysis technique under hydrothermal conditions. Elemental mapping proved the even distribution of rare earth elements, while luminescence spectroscopy confirmed efficient energy transfer between europium and other rare earth cations, thus providing additional evidence of the homogeneous distribution of rare earth elements within the crystal lattice. The average rare earth cation radii correlated linearly with the unit cell parameters (0.868 < R2 < 0.982) of the high-entropy layered rare earth hydroxychlorides. The thermal stability of the high-entropy layered rare earth hydroxychlorides was similar to that of individual hydroxychlorides and their binary solid solutions.

4.
Nanomaterials (Basel) ; 13(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38133066

RESUMO

Textiles and nonwovens (including those used in ventilation systems as filters) are currently one of the main sources of patient cross-infection. Healthcare-associated infections (HAIs) affect 5-10% of patients and stand as the tenth leading cause of death. Therefore, the development of new methods for creating functional nanostructured coatings with antibacterial and antiviral properties on the surfaces of textiles and nonwoven materials is crucial for modern medicine. Antimicrobial filter technology must be high-speed, low-energy and safe if its commercialization and mass adoption are to be successful. Cerium oxide nanoparticles can act as active components in these coatings due to their high antibacterial activity and low toxicity. This paper focuses on the elaboration of a high-throughput and resource-saving method for the deposition of cerium oxide nanoparticles onto nonwoven fibrous material for use in air-conditioning filters. The proposed spraying technique is based on the use of an aerodynamic emitter and simultaneous suction. Cerium oxide nanoparticles have successfully been deposited onto the filter materials used in air conditioning systems; the antibacterial activity of the ceria-modified filters exceeded 4.0.

5.
ACS Biomater Sci Eng ; 9(12): 6759-6772, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37955421

RESUMO

The interaction of inorganic nanomaterials with biological fluids containing proteins can lead not only to the formation of a protein corona and thereby to a change in the biological activity of nanoparticles but also to a significant effect on the structural and functional properties of the biomolecules themselves. This work studied the interaction of nanoscale CeO2, the most versatile nanozyme, with human serum albumin (HSA). Fourier transform infrared spectroscopy, MALDI-TOF mass spectrometry, UV-vis spectroscopy, and fluorescence spectroscopy confirmed the formation of HSA-CeO2 nanoparticle conjugates. Changes in protein conformation, which depend on the concentration of both citrate-stabilized CeO2 nanoparticles and pristine CeO2 nanoparticles, did not affect albumin drug-binding sites and, accordingly, did not impair the HSA transport function. The results obtained shed light on the biological consequences of the CeO2 nanoparticles' entrance into the body, which should be taken into account when engineering nanobiomaterials to increase their efficiency and reduce the side effects.


Assuntos
Cério , Nanopartículas , Nanoestruturas , Humanos , Nanopartículas/química , Cério/farmacologia , Cério/química , Cério/metabolismo , Albumina Sérica Humana/metabolismo
6.
Cells ; 12(19)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37830630

RESUMO

Cerium oxide nanoparticles (CeO2 NPs) are metal-oxide-based nanozymes with unique reactive oxygen species (ROS) scavenging abilities. Here, we studied new CeO2 NPs modified with calcein (CeO2-calcein) as an intracellular ROS inactivation/visualization theranostic agent. The molecular mechanisms of the CeO2-calcein intracellular activity, allowing for the direct monitoring of ROS inactivation in living cells, were studied. CeO2-calcein was taken up by both normal (human mesenchymal stem cells, hMSc) and cancer (human osteosarcoma, MNNG/Hos cell line) cells, and was easily decomposed via endogenous or exogenous ROS, releasing brightly fluorescent calcein, which could be quantitatively detected using fluorescence microscopy. It was shown that the CeO2-calcein has selective cytotoxicity, inducing the death of human osteosarcoma cells and modulating the expression of key genes responsible for cell redox status as well as proliferative and migration activity. Such cerium-based theranostic agents can be used in various biomedical applications.


Assuntos
Neoplasias Ósseas , Cério , Nanopartículas Metálicas , Osteossarcoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cério/farmacologia , Osteossarcoma/tratamento farmacológico
7.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833949

RESUMO

In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10-2 to 10-6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated: (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3-5 nm) and their aggregates with diameters of 60-130 nm. CeO2-2 comprises small aggregates of 8-20 nm in diameter, which consist of particles of 2-3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10-2, 10-3, 10-4, 10-5, and 10-6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types-from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10-3-10-4 M.


Assuntos
Cério , Nanopartículas , Humanos , Cério/farmacologia , Cério/química , Nanopartículas/química
8.
Biomedicines ; 11(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37893152

RESUMO

Cold argon plasma (CAP) and metal oxide nanoparticles are well known antimicrobial agents. In the current study, on an example of Escherichia coli, a series of analyses was performed to assess the antibacterial action of the combination of these agents and to evaluate the possibility of using cerium oxide and cerium fluoride nanoparticles for a combined treatment of bacterial diseases. The joint effect of the combination of cold argon plasma and several metal oxide and fluoride nanoparticles (CeO2, CeF3, WO3) was investigated on a model of E. coli colony growth on agar plates. The mutagenic effect of different CAP and nanoparticle combinations on bacterial DNA was investigated, by means of a blue-white colony assay and RAPD-PCR. The effect on cell wall damage, using atomic force microscopy, was also studied. The results obtained demonstrate that the combination of CAP and redox-active metal oxide nanoparticles (RAMON) effectively inhibits bacterial growth, providing a synergistic antimicrobial effect exceeding that of any of the agents alone. The combination of CAP and CeF3 was shown to be the most effective mutagen against plasmid DNA, and the combination of CAP and WO3 was the most effective against bacterial genomic DNA. The analysis of direct cell wall damage by atomic force microscopy showed the combination of CAP and CeF3 to be the most effective antimicrobial agent. The combination of CAP and redox-active metal oxide or metal fluoride nanoparticles has a strong synergistic antimicrobial effect on bacterial growth, resulting in plasmid and genomic DNA damage and cell wall damage. For the first time, a strong antimicrobial and DNA-damaging effect of CeF3 nanoparticles has been demonstrated.

9.
Micromachines (Basel) ; 14(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37763954

RESUMO

In recent years, there has been an increasing interest in stimuli-responsive host-guest materials due to the high potential for their application in switchable devices. Light is the most convenient stimulus for operating these materials; a light-responsive guest affects the host structure and the functional characteristics of the entire material. UV-transparent layered rare earth hydroxides intercalated with UV-switchable anions are promising candidates as stimuli-responsive host-guest materials. The interlayer distance in the layered rare earth hydroxides depends on the size of the intercalated anions, which could be changed in situ, e.g., via anion isomerisation. Nevertheless, for layered rare earth hydroxides, the possibility of such changes has not been reported yet. A good candidate anion that is capable of intercalating into the interlayer space is the cinnamate anion, which undergoes UV-assisted irreversible trans-cis isomerisation. In this work, both trans- and cis-cinnamate anions were intercalated in layered yttrium hydroxide (LYH). Upon UV-irradiation, the interlayer distance of trans-cinnamate-intercalated layered yttrium hydroxide suspended in isopropanol changed from 21.9 to 20.6 Å. For the first time, the results obtained demonstrate the possibility of using layered rare earth hydroxides as stimuli-responsive materials.

10.
Polymers (Basel) ; 15(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37765694

RESUMO

Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires advanced imaging probes. This paper reports on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium oxide nanoparticles (CeGdO2-x NPs). CeGdO2-x NPs possess an ultrasmall size, high colloidal stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level of biocompatibility and cellular uptake efficiency of CeGdO2-x-loaded capsules by cancer (human osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-based delivery platform can also be used for other imaging modalities and theranostic applications.

11.
Molecules ; 28(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175221

RESUMO

The enzyme-like activity of metal oxide nanoparticles is governed by a number of factors, including their size, shape, surface chemistry and substrate affinity. For CeO2 nanoparticles, one of the most prominent inorganic nanozymes that have diverse enzymatic activities, the size effect remains poorly understood. The low-temperature hydrothermal treatment of ceric ammonium nitrate aqueous solutions made it possible to obtain CeO2 aqueous sols with different particle sizes (2.5, 2.8, 3.9 and 5.1 nm). The peroxidase-like activity of ceria nanoparticles was assessed using the chemiluminescent method in different biologically relevant buffer solutions with an identical pH value (phosphate buffer and Tris-HCl buffer, pH of 7.4). In the phosphate buffer, doubling CeO2 nanoparticles' size resulted in a two-fold increase in their peroxidase-like activity. The opposite effect was observed for the enzymatic activity of CeO2 nanoparticles in the phosphate-free Tris-HCl buffer. The possible reasons for the differences in CeO2 enzyme-like activity are discussed.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Tamanho da Partícula , Antioxidantes , Peroxidases
12.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982493

RESUMO

In this work, new composite films were prepared by incorporating the disintegrated bacterial cellulose (BCd) nanofibers and cerium oxide nanoparticles into chitosan (CS) matrices. The influence of the amount of nanofillers on the structure and properties of the polymer composites and the specific features of the intermolecular interactions in the materials were determined. An increase in film stiffness was observed as a result of reinforcing the CS matrix with BCd nanofibers: the Young's modulus increased from 4.55 to 6.3 GPa with the introduction of 5% BCd. A further increase in Young's modulus of 6.7 GPa and a significant increase in film strength (22% increase in yield stress compared to the CS film) were observed when the BCd concentration was increased to 20%. The amount of nanosized ceria affected the structure of the composite, followed by a change in the hydrophilic properties and texture of the composite films. Increasing the amount of nanoceria to 8% significantly improved the biocompatibility of the films and their adhesion to the culture of mesenchymal stem cells. The obtained nanocomposite films combine a number of favorable properties (good mechanical strength in dry and swollen states, improved biocompatibility in relation to the culture of mesenchymal stem cells), which allows us to recommend them for use as a matrix material for the culture of mesenchymal stem cells and wound dressings.


Assuntos
Quitosana , Nanocompostos , Nanofibras , Quitosana/química , Celulose/química , Nanofibras/química , Resistência à Tração , Nanocompostos/química
13.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770832

RESUMO

Recently, human mesenchymal stem cells (hMSc) have attracted a great deal of attention as potential therapeutic agents in the treatment of socially significant diseases. Despite substantial advances in stem-cell therapy, the biological mechanisms of hMSc action after transplantation remain unclear. The use of magnetic resonance imaging (MRI) as a non-invasive method for tracking stem cells in the body is very important for analysing their distribution in tissues and organs, as well as for ensuring control of their lifetime after injection. Herein, detailed experimental data are reported on the biocompatibility towards hMSc of heavily gadolinium-doped cerium oxide nanoparticles (Ce0.8Gd0.2O2-x) synthesised using two synthetic protocols. The relaxivity of the nanoparticles was measured in a magnetic field range from 1 mT to 16.4 T. The relaxivity values (r1 = 11 ± 1.2 mM-1 s-1 and r1 = 7 ± 1.2 mM-1 s-1 in magnetic fields typical of 1.5 and 3 T MRI scanners, respectively) are considerably higher than those of the commercial Omniscan MRI contrast agent. The low toxicity of gadolinium-doped ceria nanoparticles to hMSc enables their use as an effective theranostic tool with improved MRI-contrasting properties.


Assuntos
Gadolínio , Nanopartículas , Humanos , Nanopartículas/uso terapêutico , Células-Tronco , Meios de Contraste , Imageamento por Ressonância Magnética/métodos
14.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615607

RESUMO

The chemical immobilization of cobalt(II) ions in a silica aerogel matrix enabled the synthesis of the first representative example of aerogel-based single-ion magnets. For the synthesis of the lyogels, methyl-trimethoxysilane and N-3-(trimethoxysilyl)propyl ethylenediamine were co-hydrolyzed, then the ethylenediamine groups that were immobilized on the silica matrix enabled the subsequent binding of cobalt(II) ions. Lyogels with various amounts of ethylenediamine moieties (0.1-15 mol %) were soaked in isopropanol solutions of cobalt(II) nitrate and further supercritically dried in carbon dioxide to obtain aerogels with a specific surface area of 210-596 m2·g-1, an apparent density of 0.403-0.740 cm3·g-1 and a porosity of 60-78%. The actual cobalt content in the aerogels was 0.01-1.50 mmol per 1 g of SiO2, which could easily be tuned by the concentration of ethylenediamine moieties in the silica matrix. The introduction of cobalt(II) ions into the ethylenediamine-modified silica aerogel promoted the stability of the diamine moieties at the supercritical drying stage. The molecular prototype of the immobilized cobalt(II) complex, bearing one ethylenediamine ligand [Co(en)(MeCN)(NO3)2], was synthesized and structurally characterized. Using magnetometry in the DC mode, it was shown that cobalt(II)-modified silica aerogels exhibited slow magnetic relaxation in a nonzero field. A decrease in cobalt(II) concentration in aerogels from 1.5 mmol to 0.14 mmol per 1 g of SiO2 resulted in a weakening of inter-ion interactions; the magnetization reversal energy barrier likewise increased from 4 to 18 K.


Assuntos
Imãs , Dióxido de Silício , Dióxido de Silício/química , Cobalto/química , Magnetismo , Etilenodiaminas
15.
Int J Biol Macromol ; 229: 329-343, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36592852

RESUMO

Polymeric nanocomposite materials have great potential in the development of tissue-engineered scaffolds because they affect the structure and properties of polymeric materials and regulate cell proliferation and differentiation. In this work, cerium oxide nanoparticles (CeONPs) were incorporated into a chitosan (CS) film to improve the proliferation of multipotent mesenchymal stem cells (MSCs). The citrate-stabilized CeONPs with a negative ζ-potential (-25.0 mV) were precoated with CS to obtain positively charged particles (+20.3 mV) and to prevent their aggregation in the composite solution. The composite CS-CeONP films were prepared in the salt and basic forms using a dry-cast process. The films obtained in both forms were characterized by a uniform distribution of CeONPs. The incorporation of CeONPs into the salt form of CS increased the stiffness of the CS-CeONP film, while the subsequent conversion of the film to the basic form resulted in a decrease in both the Young's modulus and the yield stress. The redox activity (Ce4+ ⇌ Ce3+) of cerium oxide in the CS-CeONP film was confirmed by thermal oxidative degradation. In vitro culture of MSCs showed that the CS-CeONP film has good biocompatibility, and in vivo experiments demonstrated its substantial regenerative potential.


Assuntos
Cério , Quitosana , Nanopartículas , Quitosana/química , Nanopartículas/química , Alicerces Teciduais/química , Cério/farmacologia , Cério/química
16.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674757

RESUMO

Novel radioprotectors are strongly demanded due to their numerous applications in radiobiology and biomedicine, e.g., for facilitating the remedy after cancer radiotherapy. Currently, cerium-containing nanomaterials are regarded as promising inorganic radioprotectors due to their unrivaled antioxidant activity based on their ability to mimic the action of natural redox enzymes like catalase and superoxide dismutase and to neutralize reactive oxygen species (ROS), which are by far the main damaging factors of ionizing radiation. The freshwater planarian flatworms are considered a promising system for testing new radioprotectors, due to the high regenerative potential of these species and an excessive amount of proliferating stem cells (neoblasts) in their bodies. Using planarian Schmidtea mediterranea, we tested CeO2 nanoparticles, well known for their antioxidant activity, along with much less studied CeF3 nanoparticles, for their radioprotective potential. In addition, both CeO2 and CeF3 nanoparticles improve planarian head blastema regeneration after ionizing irradiation by enhancing blastema growth, increasing the number of mitoses and neoblasts' survival, and modulating the expression of genes responsible for the proliferation and differentiation of neoblasts. The CeO2 nanoparticles' action stems directly from their redox activity as ROS scavengers, while the CeF3 nanoparticles' action is mediated by overexpression of "wound-induced genes" and neoblast- and stem cell-regulating genes.


Assuntos
Cério , Nanopartículas , Planárias , Animais , Raios X , Mitógenos/metabolismo , Mediterranea/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cério/farmacologia , Planárias/genética
17.
Molecules ; 29(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38202688

RESUMO

A new silver(I) cluster [Ag8L4(Py)(Pype)]·4Py·11H2O (I) with 3-benzyl-4-phenyl-1,2,4-triazol-5-thiol (L) was synthesized via the direct reaction of AgNO3 and L in MeOH, followed by recrystallization from a pyridine-piperidine mixture. The compound I was isolated in a monocrystal form and its crystal structure was determined via single crystal X-ray diffraction. The complex forms a "butterfly" cluster with triazol-5-thioles. The purity of the silver complex and its stability in the solution was confirmed via NMR analysis. Excitation and emission of the free ligand and its silver complex were studied at room temperature for solid samples. The in vitro biological activity of the free ligand and its complex was studied in relation to the non-pathogenic Mycolicibacterium smegmatis strain. Complexation of the free ligand with silver increases the biological activity of the former by almost twenty times. For the newly obtained silver cluster, a bactericidal effect was established.


Assuntos
Luminescência , Prata , Prata/farmacologia , Ligantes , Antibacterianos/farmacologia , Compostos de Sulfidrila
18.
Biomedicines ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275372

RESUMO

Ionizing radiation-induced damage in cancer and normal cells leads to apoptosis and cell death, through the intracellular oxidative stress, DNA damage and disorders of their metabolism. Irradiation doses that do not lead to the death of tumor cells can result in the emergence of radioresistant clones of these cells due to the rearrangement of metabolism and the emergence of new mutations, including those in the genes responsible for DNA repair. The search for the substances capable of modulating the functioning of the tumor cell repair system is an urgent task. Here we analyzed the effect of cerium(III) fluoride nanoparticles (CeF3 NPs) on normal (human mesenchymal stem cells-hMSC) and cancer (MCF-7 line) human cells after X-ray radiation. CeF3 NPs effectively prevent the formation of hydrogen peroxide and hydroxyl radicals in an irradiated aqueous solution, showing pronounced antioxidant properties. CeF3 NPs are able to protect hMSC from radiation-induced proliferation arrest, increasing their viability and mitochondrial membrane potential, and, conversely, inducing the cell death of MCF-7 cancer cells, causing radiation-induced mitochondrial hyperpolarization. CeF3 NPs provided a significant decrease in the number of double-strand breaks (DSBs) in hMSC, while in MCF-7 cells the number of γ-H2AX foci dramatically increased in the presence of CeF3 4 h after irradiation. In the presence of CeF3 NPs, there was a tendency to modulate the expression of most analyzed genes associated with the development of intracellular oxidative stress, cell redox status and the DNA-repair system after X-ray irradiation. Cerium-containing nanoparticles are capable of providing selective protection of hMSC from radiation-induced injuries and are considered as a platform for the development of promising clinical radioprotectors.

19.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499698

RESUMO

In this study, organo-inorganic nanohybrids LHGd-MTSPP with enzyme-like activity were prepared by in situ intercalation of anionic 5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrin and its complexes with Zn(II) and Pd(II) (MTSPP, M = 2H, Zn(II) and Pd(II)) into gadolinium layered hydroxide (LHGd). The combination of powder XRD, CHNS analysis, FT-IR, EDX, and TG confirmed the layered structure of the reaction products. The basal interplanar distances in LHGd-MTSPP samples were 22.3-22.6 Å, corresponding to the size of an intercalated tetrapyrrole molecule. According to SEM data, LHGd-MTSPP hybrids consisted of individual lamellar nanoparticles 20-50 nm in thickness. The enzyme-like activity of individual constituents, LHGd-Cl and sulfoporphyrins TSPP, ZnTSPP and PdTSPP, and hybrid LHGd-MTSPP materials, was studied by chemiluminescence analysis using the ABAP/luminol system in phosphate buffer solution. All the individual porphyrins exhibited dose-dependent antioxidant properties with respect to alkylperoxyl radicals at pH 7.4. The intercalation of free base TSPP porphyrin into the LHGd preserved the radical scavenging properties of the product. Conversely, in LHGd-MTSPP samples containing Zn(II) and Pd(II) complexes, the antioxidant properties of the porphyrins changed to dose-dependent prooxidant activity. Thus, an efficient approach to the design and synthesis of advanced LHGd-MTSPP materials with switchable enzyme-like activity was developed.


Assuntos
Porfirinas , Porfirinas/química , Gadolínio , Espectroscopia de Infravermelho com Transformada de Fourier , Hidróxidos/química
20.
Polymers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433128

RESUMO

A new biocompatible nanocomposite film material for cell engineering and other biomedical applications has been prepared. It is based on the composition of natural polysaccharides filled with cerium oxide nanoparticles (CeONPs). The preparative procedure consists of successive impregnations of pressed bacterial cellulose (BC) with a sodium alginate (ALG) solution containing nanoparticles of citrate-stabilized cerium oxide and a chitosan (CS) solution. The presence of CeONPs in the polysaccharide composite matrix and the interaction of the nanoparticles with the polymer, confirmed by IR spectroscopy, change the network architecture of the composite. This leads to noticeable changes in a number of properties of the material in comparison with those of the matrix's polysaccharide composition, viz., an increase in mechanical stiffness, a decrease in the degree of planar orientation of BC macrochains, an increase in hydrophilicity, and the shift of the processes of thermo-oxidative destruction of the material to a low-temperature region. The latter effect is considered to be caused by the redox activity of cerium oxide (reversible transitions between the states Ce4+ and Ce3+) in thermally stimulated processes in the nanocomposite films. In the equilibrium swollen state, the material retains a mechanical strength at the level of ~2 MPa. The results of in vitro tests (cultivation of multipotent mesenchymal stem cells) have demonstrated the good biocompatibility of the BC-ALG(CeONP)-CS film as cell proliferation scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA