Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 85(7): 4927-4936, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32162918

RESUMO

Quinolines undergo catalyst-free double CH-functionalization upon treatment with secondary phosphine oxides (70-75 °C, 20-48 h) followed by oxidation of the intermediate 2,4-bisphosphoryltetrahydroquinolines with chloranil. The yields of the target 2,4-bisphosphorylated quinolines are up to 77%. Thus, a double-SNHAr reaction sequence in the same molecule of quinoline has been realized. In the case of 2,4-bisphenylphosphoryltetrahydroquinolines, the aromatization occurs with elimination of one molecule of diphenylphosphine oxide to afford the products of monofunctionalization, 4-diphenylphosphorylquinolines, in 40-45% yields.

2.
J Org Chem ; 84(10): 6244-6257, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999755

RESUMO

Quinolines react with acylacetylenes and secondary phosphine chalcogenides at 20-75 °C to afford N-acylvinyl-2(1)-chalcogenophosphoryldihydroquinolines in good and excellent yields. Unlike the pyridine-derived similar intermediates, which eliminate E-alkenes to give aromatic chalcogenophosphorylpyridines, thereby completing SNHAr reaction, with quinolines, the reaction stops at the formation of the above phosphorylated N-acylvinyl-dihydroquinolines, thus representing a pendant SNHAr process. This reaction opens a one-pot atom-economic single-step access to pharmaceutically targeted phosphorylated functionalized dihydroquinolines and isoquinolines.

3.
Org Lett ; 20(23): 7388-7391, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30444374

RESUMO

Acridine adds secondary phosphine chalcogenides HP(X)R2 (X = O, S, Se; R = Ar, ArAlk) under catalyst-free conditions at 70-75 °C (both in the presence and absence of the electron-deficient acetylenes) to give 9-chalcogenophosphoryl-9,10-dihydroacridines in 61-94% yields. This contrasts with pyridines, which under similar conditions undergo an SNHAr reaction, wherein electron-deficient acetylenes play the role of oxidants. For acridine, the SNHAr step has been accomplished by the oxidation of the intermediate 9-phosphoryl-9,10-dihydroacridines (X = O) with chloranil.

4.
Chem Commun (Camb) ; 54(27): 3371-3374, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29543294

RESUMO

Pyridines undergo site selective cross-coupling with secondary phosphine chalcogenides (oxides, sulfides, and selenides) in the presence of acylphenylacetylenes under metal-free mild conditions (70-75 °C, MeCN) to afford 4-chalcogenophosphoryl pyridines in up to 71% yield. In this new type of SNHAr reaction acylacetylenes act as oxidants, being stereoselectively reduced to the corresponding olefins of the E-configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA