Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(14): e2119194119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312339

RESUMO

SignificanceSulfur isotopes confirm a key role for atmospheric sulfur gases in climatic cooling, mass extinction, and the demise of dinosaurs and other global biota after the Chicxulub bolide impact at the Cretaceous-Paleogene boundary. The sulfur isotope anomalies are confined to beds containing ejecta and, in the immediately overlying sediments, are temporally unrelated to known episodes of volcanism that also bracket this event, further addressing the controversial role of the Deccan Traps in the extinction.


Assuntos
Dinossauros , Extinção Biológica , Animais , Isótopos , Enxofre
2.
Science ; 370(6517)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154110

RESUMO

As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation-a practice that we argue should be widely adopted.

3.
Nat Ecol Evol ; 3(4): 520-521, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911149
4.
Sci Adv ; 4(9): eaat5528, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30191179

RESUMO

Global warming, acidification, and oxygen stress at the Paleocene-Eocene Thermal Maximum (PETM) are associated with severe extinction in the deep sea and major biogeographic and ecologic changes in planktonic and terrestrial ecosystems, yet impacts on shallow marine macrofaunas are obscured by the incompleteness of shelf sections. We analyze mollusk assemblages bracketing (but not including) the PETM and find few notable lasting impacts on diversity, turnover, functional ecology, body size, or life history of important clades. Infaunal and chemosymbiotic taxa become more common, and body size and abundance drop in one clade, consistent with hypoxia-driven selection, but within-clade changes are not generalizable across taxa. While an unrecorded transient response is still possible, the long-term evolutionary impact is minimal. Adaptation to already-warm conditions and slow release of CO2 relative to the time scale of ocean mixing likely buffered the impact of PETM climate change on shelf faunas.


Assuntos
Evolução Biológica , Fósseis , Moluscos/anatomia & histologia , Moluscos/fisiologia , Animais , Organismos Aquáticos , Biodiversidade , Tamanho Corporal , Fósseis/anatomia & histologia , Aquecimento Global , Moluscos/classificação
5.
Proc Biol Sci ; 283(1836)2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27488653

RESUMO

Mean body size in marine animals has increased more than 100-fold since the Cambrian, a discovery that brings to attention the key life-history parameters of lifespan and growth rate that ultimately determine size. Variation in these parameters is not well understood on the planet today, much less in deep time. Here, we present a new global database of maximum reported lifespan and shell growth coupled with body size data for 1 148 populations of marine bivalves and show that (i) lifespan increases, and growth rate decreases, with latitude, both across the group as a whole and within well-sampled species, (ii) growth rate, and hence metabolic rate, correlates inversely with lifespan, and (iii) opposing trends in lifespan and growth combined with high variance obviate any demonstrable pattern in body size with latitude. Our observations suggest that the proposed increase in metabolic activity and demonstrated increase in body size of organisms over the Phanerozoic should be accompanied by a concomitant shift towards faster growth and/or shorter lifespan in marine bivalves. This prediction, testable from the fossil record, may help to explain one of the more fundamental patterns in the evolutionary and ecological history of animal life on this planet.


Assuntos
Evolução Biológica , Bivalves/crescimento & desenvolvimento , Tamanho Corporal , Longevidade , Animais , Bivalves/classificação , Ecologia , Fósseis
6.
Proc Natl Acad Sci U S A ; 111(18): 6582-7, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753570

RESUMO

Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

7.
PLoS One ; 4(2): e4385, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19194490

RESUMO

BACKGROUND: As Earth warms, temperate and subpolar marine species will increasingly shift their geographic ranges poleward. The endemic shelf fauna of Antarctica is especially vulnerable to climate-mediated biological invasions because cold temperatures currently exclude the durophagous (shell-breaking) predators that structure shallow-benthic communities elsewhere. METHODOLOGY/PRINCIPAL FINDINGS: We used the Eocene fossil record from Seymour Island, Antarctic Peninsula, to project specifically how global warming will reorganize the nearshore benthos of Antarctica. A long-term cooling trend, which began with a sharp temperature drop approximately 41 Ma (million years ago), eliminated durophagous predators-teleosts (modern bony fish), decapod crustaceans (crabs and lobsters) and almost all neoselachian elasmobranchs (modern sharks and rays)-from Antarctic nearshore waters after the Eocene. Even prior to those extinctions, durophagous predators became less active as coastal sea temperatures declined from 41 Ma to the end of the Eocene, approximately 33.5 Ma. In response, dense populations of suspension-feeding ophiuroids and crinoids abruptly appeared. Dense aggregations of brachiopods transcended the cooling event with no apparent change in predation pressure, nor were there changes in the frequency of shell-drilling predation on venerid bivalves. CONCLUSIONS/SIGNIFICANCE: Rapid warming in the Southern Ocean is now removing the physiological barriers to shell-breaking predators, and crabs are returning to the Antarctic Peninsula. Over the coming decades to centuries, we predict a rapid reversal of the Eocene trends. Increasing predation will reduce or eliminate extant dense populations of suspension-feeding echinoderms from nearshore habitats along the Peninsula while brachiopods will continue to form large populations, and the intensity of shell-drilling predation on infaunal bivalves will not change appreciably. In time the ecological effects of global warming could spread to other portions of the Antarctic coast. The differential responses of faunal components will reduce the endemic character of Antarctic subtidal communities, homogenizing them with nearshore communities at lower latitudes.


Assuntos
Ecossistema , Efeito Estufa , Animais , Regiões Antárticas , Biodiversidade , Equinodermos/fisiologia , Extinção Biológica , Fósseis , Geografia , História Antiga , Comportamento Predatório , Análise de Componente Principal , Fatores de Tempo
8.
Science ; 321(5885): 97-100, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599780

RESUMO

It has previously been thought that there was a steep Cretaceous and Cenozoic radiation of marine invertebrates. This pattern can be replicated with a new data set of fossil occurrences representing 3.5 million specimens, but only when older analytical protocols are used. Moreover, analyses that employ sampling standardization and more robust counting methods show a modest rise in diversity with no clear trend after the mid-Cretaceous. Globally, locally, and at both high and low latitudes, diversity was less than twice as high in the Neogene as in the mid-Paleozoic. The ratio of global to local richness has changed little, and a latitudinal diversity gradient was present in the early Paleozoic.


Assuntos
Biodiversidade , Fósseis , Invertebrados , Paleontologia , Animais , Evolução Biológica , Bases de Dados Factuais , Meio Ambiente , Geografia , Sedimentos Geológicos , Invertebrados/classificação , Paleontologia/métodos , Dinâmica Populacional , Estudos de Amostragem , Água do Mar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA