Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
2.
Sci Rep ; 14(1): 8871, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632277

RESUMO

HOIL-1L deficiency was recently reported to be one of the causes of myopathy and dilated cardiomyopathy (DCM). However, the mechanisms by which myopathy and DCM develop have not been clearly elucidated. Here, we sought to elucidate these mechanisms using the murine myoblast cell line C2C12 and disease-specific human induced pluripotent stem cells (hiPSCs). Myotubes differentiated from HOIL-1L-KO C2C12 cells exhibited deteriorated differentiation and mitotic cell accumulation. CMs differentiated from patient-derived hiPSCs had an abnormal morphology with a larger size and were excessively multinucleated compared with CMs differentiated from control hiPSCs. Further analysis of hiPSC-derived CMs showed that HOIL-1L deficiency caused cell cycle alteration and mitotic cell accumulation. These results demonstrate that abnormal cell maturation possibly contribute to the development of myopathy and DCM. In conclusion, HOIL-1L is an important intrinsic regulator of cell cycle-related myotube and CM maturation and cell proliferation.


Assuntos
Ciclo Celular , Células-Tronco Pluripotentes Induzidas , Doenças Musculares , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Linhagem Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclo Celular/genética
3.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38652464

RESUMO

OTULIN-related autoinflammatory syndrome (ORAS), a severe autoinflammatory disease, is caused by biallelic pathogenic variants of OTULIN, a linear ubiquitin-specific deubiquitinating enzyme. Loss of OTULIN attenuates linear ubiquitination by inhibiting the linear ubiquitin chain assembly complex (LUBAC). Here, we report a patient who harbors two rare heterozygous variants of OTULIN (p.P152L and p.R306Q). We demonstrated accumulation of linear ubiquitin chains upon TNF stimulation and augmented TNF-induced cell death in mesenchymal stem cells differentiated from patient-derived iPS cells, which confirms that the patient has ORAS. However, although the de novo p.R306Q variant exhibits attenuated deubiquitination activity without reducing the amount of OTULIN, the deubiquitination activity of the p.P152L variant inherited from the mother was equivalent to that of the wild-type. Patient-derived MSCs in which the p.P152L variant was replaced with wild-type also exhibited augmented TNF-induced cell death and accumulation of linear chains. The finding that ORAS can be caused by a dominant-negative p.R306Q variant of OTULIN furthers our understanding of disease pathogenesis.


Assuntos
Ubiquitinação , Feminino , Humanos , Endopeptidases/genética , Endopeptidases/metabolismo , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/patologia , Doenças Hereditárias Autoinflamatórias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mutação , Linhagem , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Ubiquitina/metabolismo , Recém-Nascido
4.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329126

RESUMO

Linear ubiquitin chains, which are generated specifically by the linear ubiquitin assembly complex (LUBAC) ubiquitin ligase, play crucial roles in immune signaling, including NF-κB activation. LUBAC comprises catalytic large isoform of heme-oxidized iron regulatory protein 2 ubiquitin ligase 1 (HOIL-1L) interacting protein (HOIP), accessory HOIL-1L, and SHANK-associated RH domain-interacting protein (SHARPIN). Deletion of the ubiquitin ligase activity of HOIL-1L, an accessory ligase of LUBAC, augments LUBAC functions by enhancing LUBAC-mediated linear ubiquitination, which is catalyzed by HOIP. Here, we show that HOIL-1L ΔRING1 mice, which exhibit augmented LUBAC functions upon loss of the HOIL-1L ligase, developed systemic lupus erythematosus (SLE) and Sjögren's syndrome in a female-dominant fashion. Augmented LUBAC activity led to hyperactivation of both lymphoid and myeloid cells. In line with the findings in mice, we sought to identify missense single nucleotide polymorphisms/variations of the RBCK1/HOIL-1L gene in humans that attenuate HOIL-1L ligase activity. We found that the R464H variant, which is encoded by rs774507518 within the RBCK1/HOIL-1L gene, attenuated HOIL-1L ligase activity and augmented LUBAC-mediated immune signaling, including that mediated by Toll-like receptors. We also found that rs774507518 was enriched significantly in patients with SLE, strongly suggesting that RBCK1/HOIL-1L is an SLE susceptibility gene and that augmented linear ubiquitin signaling generated specifically by LUBAC underlies the pathogenesis of this prototype systemic autoimmune disease.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Feminino , Animais , Camundongos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas , Doenças Autoimunes/genética , Proteínas de Transporte/genética
5.
Acta Neuropathol ; 147(1): 46, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411740

RESUMO

At least five enzymes including three E3 ubiquitin ligases are dedicated to glycogen's spherical structure. Absence of any reverts glycogen to a structure resembling amylopectin of the plant kingdom. This amylopectinosis (polyglucosan body formation) causes fatal neurological diseases including adult polyglucosan body disease (APBD) due to glycogen branching enzyme deficiency, Lafora disease (LD) due to deficiencies of the laforin glycogen phosphatase or the malin E3 ubiquitin ligase and type 1 polyglucosan body myopathy (PGBM1) due to RBCK1 E3 ubiquitin ligase deficiency. Little is known about these enzymes' functions in glycogen structuring. Toward understanding these functions, we undertake a comparative murine study of the amylopectinoses of APBD, LD and PGBM1. We discover that in skeletal muscle, polyglucosan bodies form as two main types, small and multitudinous ('pebbles') or giant and single ('boulders'), and that this is primarily determined by the myofiber types in which they form, 'pebbles' in glycolytic and 'boulders' in oxidative fibers. This pattern recapitulates what is known in the brain in LD, innumerable dust-like in astrocytes and single giant sized in neurons. We also show that oxidative myofibers are relatively protected against amylopectinosis, in part through highly increased glycogen branching enzyme expression. We present evidence of polyglucosan body size-dependent cell necrosis. We show that sex influences amylopectinosis in genotype, brain region and myofiber-type-specific fashion. RBCK1 is a component of the linear ubiquitin chain assembly complex (LUBAC), the only known cellular machinery for head-to-tail linear ubiquitination critical to numerous cellular pathways. We show that the amylopectinosis of RBCK1 deficiency is not due to loss of linear ubiquitination, and that another function of RBCK1 or LUBAC must exist and operate in the shaping of glycogen. This work opens multiple new avenues toward understanding the structural determinants of the mammalian carbohydrate reservoir critical to neurologic and neuromuscular function and disease.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Doença de Depósito de Glicogênio , Doenças do Sistema Nervoso , Animais , Camundongos , Glicogênio , Ubiquitina-Proteína Ligases , Ubiquitinas , Mamíferos
6.
J Immunol ; 211(12): 1823-1834, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902285

RESUMO

Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL1)-deficient patients experience chronic intestinal inflammation and diarrhea as well as increased susceptibility to bacterial infections. HOIL1 is a component of the linear ubiquitin chain assembly complex that regulates immune signaling pathways, including NF-κB-activating pathways. We have shown previously that HOIL1 is essential for survival following Citrobacter rodentium gastrointestinal infection of mice, but the mechanism of protection by HOIL1 was not examined. C. rodentium is an important murine model for human attaching and effacing pathogens, enteropathogenic and enterohemorrhagic Escherichia coli that cause diarrhea and foodborne illnesses and lead to severe disease in children and immunocompromised individuals. In this study, we found that C. rodentium infection resulted in severe colitis and dissemination of C. rodentium to systemic organs in HOIL1-deficient mice. HOIL1 was important in the innate immune response to limit early replication and dissemination of C. rodentium. Using bone marrow chimeras and cell type-specific knockout mice, we found that HOIL1 functioned in radiation-resistant cells and partly in radiation-sensitive cells and in myeloid cells to limit disease, but it was dispensable in intestinal epithelial cells. HOIL1 deficiency significantly impaired the expansion of group 3 innate lymphoid cells and their production of IL-22 during C. rodentium infection. Understanding the role HOIL1 plays in type 3 inflammation and in limiting the pathogenesis of attaching and effacing lesion-forming bacteria will provide further insight into the innate immune response to gastrointestinal pathogens and inflammatory disorders.


Assuntos
Infecções por Enterobacteriaceae , Imunidade Inata , Criança , Humanos , Animais , Camundongos , Citrobacter rodentium/fisiologia , Ligases , Linfócitos/patologia , Colo/patologia , Inflamação/patologia , Diarreia/patologia , Ubiquitinas , Camundongos Endogâmicos C57BL
7.
J Biol Chem ; 299(9): 105165, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595872

RESUMO

Attachment of polyubiquitin (poly-Ub) chains to proteins is a major posttranslational modification in eukaryotes. Linear ubiquitin chain assembly complex, consisting of HOIP (HOIL-1-interacting protein), HOIL-1L (heme-oxidized IRP2 Ub ligase 1), and SHARPIN (Shank-associated RH domain-interacting protein), specifically synthesizes "head-to-tail" poly-Ub chains, which are linked via the N-terminal methionine α-amino and C-terminal carboxylate of adjacent Ub units and are thus commonly called "linear" poly-Ub chains. Linear ubiquitin chain assembly complex-assembled linear poly-Ub chains play key roles in immune signaling and suppression of cell death and have been associated with immune diseases and cancer; HOIL-1L is one of the proteins known to selectively bind linear poly-Ub via its Npl4 zinc finger (NZF) domain. Although the structure of the bound form of the HOIL-1L NZF domain with linear di-Ub is known, several aspects of the recognition specificity remain unexplained. Here, we show using NMR and orthogonal biophysical methods, how the NZF domain evolves from a free to the specific linear di-Ub-bound state while rejecting other potential Ub species after weak initial binding. The solution structure of the free NZF domain revealed changes in conformational stability upon linear Ub binding, and interactions between the NZF core and tail revealed conserved electrostatic contacts, which were sensitive to charge modulation at a reported phosphorylation site: threonine-207. Phosphomimetic mutations reduced linear Ub affinity by weakening the integrity of the linear di-Ub-bound conformation. The described molecular determinants of linear di-Ub binding provide insight into the dynamic aspects of the Ub code and the NZF domain's role in full-length HOIL-1L.


Assuntos
Ubiquitina , Ubiquitinas , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Conformação Molecular , Dedos de Zinco , Ubiquitinação
8.
J Biochem ; 174(2): 99-107, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37279649

RESUMO

In addition to its role in the ubiquitin-proteasome system of protein degradation, polyubiquitination is involved in the regulation of intracellular events. Depending on the type of ubiquitin-ubiquitin linkage used, polyubiquitin can assume several types of structures. The spatiotemporal dynamics of polyubiquitin involve multiple adaptor proteins and induce different downstream outputs. Linear ubiquitination, in which the N-terminal methionine on the acceptor ubiquitin serves as the site for ubiquitin-ubiquitin conjugation, is a rare and atypical type of polyubiquitin modification. The production of linear ubiquitin chains is dependent on various external inflammatory stimuli and leads to the transient activation of the downstream NF-κB signalling pathway. This in turn suppresses extrinsic programmed cell death signals and protects cells from activation-induced cell death under inflammatory conditions. Recent evidence has revealed the role of linear ubiquitination in various biological processes under both physiological and pathological conditions. This led us to propose that linear ubiquitination may be pivotal in the 'inflammatory adaptation' of cells, and consequently in tissue homeostasis and inflammatory disease. In this review, we focused on the physiological and pathophysiological roles of linear ubiquitination in vivo in response to a changing inflammatory microenvironment.


Assuntos
Poliubiquitina , Ubiquitina , Poliubiquitina/metabolismo , Ubiquitinação , Ubiquitina/genética , Ubiquitina/metabolismo , NF-kappa B/metabolismo , Homeostase , Ubiquitina-Proteína Ligases/metabolismo
9.
FEBS Lett ; 597(9): 1193-1212, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060248

RESUMO

Tumor-elicited inflammation confers tumorigenic properties, including cell death resistance, proliferation, or immune evasion. To focus on inflammatory signaling in tumors, we investigated linear ubiquitination, which enhances the nuclear factor-κB signaling pathway and prevents extrinsic programmed cell death under inflammatory environments. Here, we showed that linear ubiquitination was augmented especially in tumor cells around a necrotic core. Linear ubiquitination allowed melanomas to tolerate the hostile tumor microenvironment and to extend a necrosis-containing morphology. Loss of linear ubiquitination resulted in few necrotic lesions and growth regression, further leading to repression of innate anti-PD-1 therapy resistance signatures in melanoma as well as activation of interferon responses and antigen presentation that promote immune-mediated tumor eradication. Collectively, linear ubiquitination promotes tumor-specific tissue remodeling and the ensuing immune evasion.


Assuntos
Neoplasias , Ubiquitina , Humanos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Evasão da Resposta Imune , Ubiquitinação , NF-kappa B/metabolismo , Necrose , Microambiente Tumoral
10.
J Biol Chem ; 299(5): 104701, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059186

RESUMO

To ensure proper utilization of iron and avoid its toxicity, cells are equipped with iron-sensing proteins to maintain cellular iron homeostasis. We showed previously that nuclear receptor coactivator 4 (NCOA4), a ferritin-specific autophagy adapter, intricately regulates the fate of ferritin; upon binding to Fe3+, NCOA4 forms insoluble condensates and regulates ferritin autophagy in iron-replete conditions. Here, we demonstrate an additional iron-sensing mechanism of NCOA4. Our results indicate that the insertion of an iron-sulfur (Fe-S) cluster enables preferential recognition of NCOA4 by the HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) ubiquitin ligase in iron-replete conditions, resulting in degradation by the proteasome and subsequent inhibition of ferritinophagy. We also found that both condensation and ubiquitin-mediated degradation of NCOA4 can occur in the same cell, and the cellular oxygen tension determines the selection of these pathways. Fe-S cluster-mediated degradation of NCOA4 is enhanced under hypoxia, whereas NCOA4 forms condensates and degrades ferritin at higher oxygen levels. Considering the involvement of iron in oxygen handling, our findings demonstrate that the NCOA4-ferritin axis is another layer of cellular iron regulation in response to oxygen levels.


Assuntos
Ferro , Oxigênio , Ferro/metabolismo , Oxigênio/metabolismo , Coativadores de Receptor Nuclear/genética , Ferritinas/metabolismo , Fatores de Transcrição/metabolismo , Homeostase , Ubiquitinas/metabolismo , Autofagia
11.
J Biochem ; 173(4): 317-326, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36610722

RESUMO

Pathogenic bacteria deliver virulence factors called effectors into host cells in order to facilitate infection. The Shigella effector proteins IpaH1.4 and IpaH2.5 are members of the 'novel E3 ligase' (NEL)-type bacterial E3 ligase family. These proteins ubiquitinate the linear ubiquitin assembly complex (LUBAC) to inhibit nuclear factor (NF)-κB activation and, concomitantly, the inflammatory response. However, the molecular mechanisms underlying the interaction and recognition between IpaH1.4 and IpaH2.5 and LUBAC are unclear. Here we present the crystal structures of the substrate-recognition domains of IpaH1.4 and IpaH2.5 at resolutions of 1.4 and 3.4 Å, respectively. The LUBAC-binding site on IpaH1.4 was predicted based on structural comparisons with the structures of other NEL-type E3s. Structural and biochemical data were collected and analysed to determine the specific residues of IpaH1.4 that are involved in interactions with LUBAC and influence NF-κB signaling. The new structural insight presented here demonstrates how bacterial pathogens target innate immune signaling pathways.


Assuntos
Shigella , Ubiquitina , Ubiquitina/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Transdução de Sinais , Shigella/metabolismo , Ubiquitinação
12.
Leukemia ; 37(1): 122-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36352193

RESUMO

We investigated the role of Hoip, a catalytic subunit of linear ubiquitin chain assembly complex (LUBAC), in adult hematopoiesis and myeloid leukemia by using both conditional deletion of Hoip and small-molecule chemical inhibitors of Hoip. Conditional deletion of Hoip led to significantly longer survival and marked depletion of leukemia burden in murine myeloid leukemia models. Nevertheless, a competitive transplantation assay showed the reduction of donor-derived cells in the bone marrow of recipient mice was relatively mild after conditional deletion of Hoip. Although both Hoip-deficient hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) impaired the maintenance of quiescence, conditional deletion of Hoipinduced apoptosis in LSCs but not HSCs in vivo. Structure-function analysis revealed that LUBAC ligase activity and the interaction of LUBAC subunits were critical for the propagation of leukemia. Hoip regulated oxidative phosphorylation pathway independently of nuclear factor kappa B pathway in leukemia, but not in normal hematopoietic cells. Finally, the administration of thiolutin, which inhibits the catalytic activity of Hoip, improved the survival of recipients in murine myeloid leukemia and suppressed propagation in the patient-derived xenograft model of myeloid leukemia. Collectively, these data indicate that inhibition of LUBAC activity may be a valid therapeutic target for myeloid leukemia.


Assuntos
Leucemia Mieloide , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , NF-kappa B/metabolismo , Apoptose
13.
J Pathol ; 259(3): 304-317, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36454102

RESUMO

Disruption of the intestinal epithelial barrier and dysregulation of macrophages are major factors contributing to the pathogenesis of inflammatory bowel diseases (IBDs). Activation of NF-κB and cell death are involved in maintaining intestinal homeostasis in a cell type-dependent manner. Although both are regulated by linear ubiquitin chain assembly complex (LUBAC)-mediated linear ubiquitination, the physiological relevance of linear ubiquitination to intestinal inflammation remains unexplored. Here, we used two experimental mouse models of IBD (intraperitoneal LPS and oral dextran sodium sulfate [DSS] administration) to examine the role of linear ubiquitination in intestinal epithelial cells (IECs) and macrophages during intestinal inflammation. We did this by deleting the linear ubiquitination activity of LUBAC specifically from IECs or macrophages. Upon LPS administration, loss of ligase activity in IECs induced mucosal inflammation and augmented IEC death. LPS-mediated death of LUBAC-defective IECs was triggered by TNF. IEC death was rescued by an anti-TNF antibody, and TNF (but not LPS) induced apoptosis of organoids derived from LUBAC-defective IECs. However, augmented TNF-mediated IEC death did not overtly affect the severity of colitis after DSS administration. By contrast, defective LUBAC ligase activity in macrophages ameliorated DSS-induced colitis by attenuating both infiltration of macrophages and expression of inflammatory cytokines. Decreased production of macrophage chemoattractant MCP-1/CCL2, as well as pro-inflammatory IL-6 and TNF, occurred through impaired activation of NF-κB and ERK via loss of ligase activity in macrophages. Taken together, these results indicate that both intraperitoneal LPS and oral DSS administrations are beneficial for evaluating epithelial integrity under inflammatory conditions, as well as macrophage functions in the event of an epithelial barrier breach. The data clarify the cell-specific roles of linear ubiquitination as a critical regulator of TNF-mediated epithelial integrity and macrophage pro-inflammatory responses during intestinal inflammation. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Colite , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Inibidores do Fator de Necrose Tumoral/efeitos adversos , Inibidores do Fator de Necrose Tumoral/metabolismo , Colite/patologia , Células Epiteliais/patologia , Macrófagos/patologia , Ubiquitinação , Inflamação/patologia , Ligases/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo
14.
Int Immunol ; 35(1): 19-25, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36149813

RESUMO

Polyubiquitination is a post-translational modification involved in a wide range of immunological events, including inflammatory responses, immune cell differentiation, and development of inflammatory diseases. The versatile functions of polyubiquitination are based on different types of ubiquitin linkage, which enable various UBD (ubiquitin binding domain)-containing adaptor proteins to associate and induce distinct biological outputs. A unique and atypical type of polyubiquitin chain comprising a conjugation between the N-terminal methionine of the proximal ubiquitin moiety and the C-terminal glycine of the distal ubiquitin moiety, referred to as a linear or M1-linked ubiquitin chain, has been studied exclusively within the field of immunology because it is distinct from other polyubiquitin forms: linear ubiquitin chains are generated predominantly by various inflammatory stimulants, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and act as a critical modulator of transient and optimal signal transduction. Moreover, accumulating evidence suggests that linear ubiquitin chains are of physiological significance. Dysregulation of linear ubiquitination triggers chronic inflammation and immunodeficiency via downregulation of linear ubiquitin-dependent nuclear factor-kappa B (NF-κB) signaling and by triggering TNF-α-induced cell death, suggesting that linear ubiquitination is a homeostatic regulator of tissue-specific functions. In this review, we focus on our current understating of the molecular and cellular mechanisms by which linear ubiquitin chains control inflammatory environments. Furthermore, we review the role of linear ubiquitination on T cell development, differentiation, and function, thereby providing insight into its direct association with maintaining the immune system.


Assuntos
Poliubiquitina , Fator de Necrose Tumoral alfa , Poliubiquitina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Homeostase
15.
Mucosal Immunol ; 15(4): 642-655, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35534698

RESUMO

Patients with mutations in HOIL1 experience a complex immune disorder including intestinal inflammation. To investigate the role of HOIL1 in regulating intestinal inflammation, we employed a mouse model of partial HOIL1 deficiency. The ileum of HOIL1-deficient mice displayed features of type 2 inflammation including tuft cell and goblet cell hyperplasia, and elevated expression of Il13, Il5 and Il25 mRNA. Inflammation persisted in the absence of T and B cells, and bone marrow chimeric mice revealed a requirement for HOIL1 expression in radiation-resistant cells to regulate inflammation. Although disruption of IL-4 receptor alpha (IL4Rα) signaling on intestinal epithelial cells ameliorated tuft and goblet cell hyperplasia, expression of Il5 and Il13 mRNA remained elevated. KLRG1hi CD90lo group 2 innate lymphoid cells were increased independent of IL4Rα signaling, tuft cell hyperplasia and IL-25 induction. Antibiotic treatment dampened intestinal inflammation indicating commensal microbes as a contributing factor. We have identified a key role for HOIL1, a component of the Linear Ubiquitin Chain Assembly Complex, in regulating type 2 inflammation in the small intestine. Understanding the mechanism by which HOIL1 regulates type 2 inflammation will advance our understanding of intestinal homeostasis and inflammatory disorders and may lead to the identification of new targets for treatment.


Assuntos
Imunidade Inata , Interleucina-13 , Ubiquitina-Proteína Ligases/metabolismo , Animais , Hiperplasia , Inflamação , Interleucina-5 , Intestino Delgado , Linfócitos , Camundongos , RNA Mensageiro
16.
EMBO Rep ; 23(5): e54278, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318808

RESUMO

Iron is not only essential but also a toxic trace element. Under iron repletion, ferritin maintains cellular iron homeostasis by storing iron to avoid iron toxicity. Under iron depletion, the ferritin-specific autophagy adaptor NCOA4 delivers ferritin to lysosomes via macroautophagy to enable cells to use stored iron. Here, we show that NCOA4 also plays crucial roles in the regulation of ferritin fate under iron repletion. NCOA4 forms insoluble condensates via multivalent interactions generated by the binding of iron to its intrinsically disordered region. This sequesters NCOA4 away from ferritin and allows ferritin accumulation in the early phase of iron repletion. Under prolonged iron repletion, NCOA4 condensates can deliver ferritin to lysosomes via a TAX1BP1-dependent non-canonical autophagy pathway, thereby preventing relative iron deficiency due to excessive iron storage and reduced iron uptake. Together, these observations suggest that the NCOA4-ferritin axis modulates intracellular iron homeostasis in accordance with cellular iron availability.


Assuntos
Ferritinas , Ferro , Autofagia/fisiologia , Ferritinas/genética , Ferritinas/metabolismo , Homeostase , Ferro/metabolismo , Lisossomos/metabolismo , Coativadores de Receptor Nuclear/genética , Fatores de Transcrição/metabolismo
17.
FEBS Lett ; 596(9): 1147-1164, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35213742

RESUMO

Linear ubiquitin chains play pivotal roles in immune signaling by augmenting NF-κB activation and suppressing programmed cell death induced by various stimuli. A20-binding inhibitor of NF-κB 1 (ABIN1) binds to linear ubiquitin chains and attenuates NF-κB activation and cell death induction. Although interactions with linear ubiquitin chains are thought to play a role in ABIN1-mediated suppression of NF-κB and cell death, the underlying molecular mechanisms remain unclear. Here, we show that upon stimulation by Toll-like receptor (TLR) ligands, ABIN1 is phosphorylated on Ser 83 and functions as a selective autophagy receptor. ABIN1 recognizes components of the MyD88 signaling complex via interaction with linear ubiquitin chains conjugated to components of the complex in TLR signaling, which leads to autophagic degradation of signaling proteins and attenuated NF-κB signaling. Our current findings indicate that phosphorylation and linear ubiquitination also play a role in downregulation of signaling via selective induction of autophagy.


Assuntos
NF-kappa B , Ubiquitina , Autofagia , NF-kappa B/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
18.
Brain ; 145(7): 2361-2377, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35084461

RESUMO

Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Doença de Lafora , Ubiquitina-Proteína Ligases , Animais , Regulação para Baixo , Glucanos/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos , Epilepsias Mioclônicas Progressivas , Doenças do Sistema Nervoso , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685685

RESUMO

The ubiquitin system modulates protein functions by decorating target proteins with ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival, proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN; HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore, we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Doença , Humanos , Terapia de Alvo Molecular , Ubiquitina/metabolismo
20.
Protein Expr Purif ; 187: 105953, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390872

RESUMO

The linear ubiquitin chain assembly complex tethering motif (LUBAC-LTM) domain is composed of two different accessory LUBAC components (HOIL-1L and SHARPIN) but folds as a single globular domain. Targeted disruption of the intricate LTM-LTM interaction destabilizes LUBAC in lymphoma cells, thereby attenuating LUBAC stability, which highlights that targeting the interaction between the two LTM motifs is a promising strategy for the development of new agents against cancers that depend on LUBAC activity for their survival. To further screen for small-molecule inhibitors that can selectively disrupt the LTM-LTM interaction, it is necessary to obtain high-purity samples of the LTM domain. Ideally, such a sample would not contain any components other than the LTM itself, so that false positives (molecules binding to other parts of LUBAC) could be eliminated from the screening process. Here we report a simple strategy that enabled successful bacterial production of the isolated LUBAC LTM domain in high yield and at high purity. The strategy combines (1) structural analysis highlighting the possibility of tandem expression in the SHARPINL™ to HOIL-1LL™ direction; (2) bacterial expression downstream of EGFP to efficiently monitor expression and solubility; (3) gentle low-temperature folding using autoinduction. Formation of stably folded LTM was verified by size-exclusion chromatography and heteronuclear NMR spectroscopy. From 200-ml cultures sufficient quantities (~7 mg) of high-purity protein for structural studies could be obtained. The presented strategy will be beneficial for LUBAC LTM-based drug-screening efforts and likely serve as a useful primer for similar cases, i.e., whenever a smaller folded fragment is to be isolated from a larger protein complex for site-specific downstream applications.


Assuntos
Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/química , Ubiquitinas/genética , Sítios de Ligação , Cromatografia em Gel , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Transdução de Sinais , Solubilidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA