Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31685, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841437

RESUMO

Potentially toxic elements (PTEs) in sediment can be highly hazardous to the environment and public health. This study aimed to assess the human and ecological risks of PTEs in sediments around a pharmaceutical industry in Ilorin, Nigeria. Physicochemical parameters and the concentrations of lead (Pb), chromium (Cr), cadmium (Cd), cobalt (Co), arsenic (As), and nickel (Ni) were analyzed in sediment samples collected from seven locations in the wet and dry seasons. Standard two-dimensional principal component analysis (PCA) and risk assessments were also conducted. The concentrations of Pb, Co, Ni, Cr, Cd, and As in the sediments ranged from 0.001 to 0.031 mg/kg, 0-0.005 mg/kg, 0.005-0.012 mg/kg, 0.001-0.014 mg/kg, 0.005-0.024 mg/kg, and 0.001-0.012 mg/kg, respectively. The mean concentrations of the total PTEs content were found in decreasing order of concentration: Pb > Cd > Ni > Cr > As > Co. PCA showed that some of the PTEs were highly concentrated in samples obtained at other locations as well as at the discharge point. The Hazard Index was mostly <1 across locations, indicating little to no probable non-cancerous effect. However, the incremental lifetime cancer risk for arsenic and nickel was high and required attention. The ecological risk assessment showed that lead and arsenic were the major PTEs pollutants in all locations. The study identifies PTEs profiles in sediments and emphasises the necessity of continual monitoring and action to stop long-term negative impacts on the local environment and public health.

2.
Heliyon ; 10(4): e26443, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420395

RESUMO

This research entails a comparison of the effectiveness of unmodified Luffa cylindrica fiber in a fully packed bed (RLCF) and NaOH-modified Luffa cylindrica fiber in another fully packed bed (MLCF) in the context of phenol removal from wastewater. Experimental data obtained through batch adsorption experiments were utilized to determine the most suitable model. It was observed that as the initial concentration of phenol increased from 100 to 500 mg/l, the maximum percentage removal increased from 63.5 to 83.1% for RLCF-PB and from 89.9 to 99.5% for MLCF-PB. The correlation coefficient (R2) was calculated for the Langmuir, Freundlich, Temkin, Harkin-Jura, Halsey, and Flory-Huggins models for both materials. The analysis revealed that the pseudo-second-order model was the most suitable, followed by the Elovich model, with the pseudo-first-order model being the least suitable. The Weber-Morris diffusion model suggested that pore diffusion was the rate-determining step, and diffusion at the border layer was determined to be endothermic, feasible, heterogeneous, and spontaneous. In summary, this study indicates that MLCF-PB is a promising material for the efficient removal of phenol from aqueous solutions.

3.
Heliyon ; 10(1): e23158, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163109

RESUMO

Sugar dust poses significant risks in the sugar industry, threatening workers' safety and health as well as the potential for explosions and fires. The combustibility of sugar dust arises from its small, lightweight particles that disperse easily and ignite readily. Effective management strategies are essential to ensuring a safe work environment and preventing accidents. This perspective article provides an overview of sugar dust management in the global sugar industry. Various methods are employed to collect and manage sugar dust, including dust collectors, air handling systems, and proper housekeeping procedures. Advancements like electrostatic precipitators, high-efficiency particulate air filters, and self-cleaning dust collection systems show promise for future management. Utilizing both artificial intelligence and nanotechnology can also contribute to minimizing the concentrations of sugar dust in facilities. Stringent regulations and guidelines exist to control dust explosions in the industry. Implementation of robust safety measures and training programs significantly curbs the economic and environmental toll of sugar dust explosions. The paper concludes with recommendations to address sugar dust challenges, including enhanced regulation, investment in technology and research, and improved collaboration among industry stakeholders. These measures will mitigate hazards, ensure worker well-being, and safeguard the sugar industry's operations.

4.
Heliyon ; 9(10): e20440, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37790970

RESUMO

Microplastics, measuring less than 5 mm in diameter, are now found in various environmental media, including soil, water, and air, and have infiltrated the food chain, ultimately becoming a part of the human diet. This study offers a comprehensive examination of the intricate nexus between microplastics and human health, thereby contributing to the existing knowledge on the subject. Sources of microplastics, including microfibers from textiles, personal care products, and wastewater treatment plants, among others, were assessed. The study meticulously examined the diverse routes of microplastic exposure-ingestion, inhalation, and dermal contact-offering insights into the associated health risks. Notably, ingestion of microplastics has been linked to gastrointestinal disturbances, endocrine disruption, and the potential transmission of pathogenic bacteria. Inhalation of airborne microplastics emerges as a critical concern, with possible implications for respiratory and cardiovascular health. Dermal contact, although less explored, raises the prospect of skin irritation and allergic reactions. The impacts of COVID-19 on microplastic pollution were also highlighted. Throughout the manuscript, the need for a deeper mechanistic understanding of microplastic interactions with human systems is emphasized, underscoring the urgency for further research and public awareness.

5.
Biotechnol Rep (Amst) ; 39: e00805, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37448785

RESUMO

Sugarcane bagasse is an abundant and renewable agricultural waste material generated by the sugar industry worldwide. The use of sugarcane bagasse as a bio-coagulant precursor in water treatment is an eco-friendly and cost-effective approach that has shown great potential. This article reviewed the prospects and challenges of utilizing sugarcane bagasse as a bio-coagulant precursor for water treatment. The article reviewed past studies and explored the properties and chemical composition of sugarcane bagasse and the bioactive compounds that can be extracted from it, as well as their potential coagulation performance in water treatment. It was observed that there are few studies that have been published on the subject. The effectiveness of sugarcane bagasse-based coagulants varies depending on several factors, such as pH, temperature, and water quality parameters. However, the lack of standardization in the production of sugarcane bagasse-based coagulants is a challenge that needs to be addressed. Additionally, the optimization of extraction and processing methods to enhance the effectiveness of sugarcane bagasse-based coagulants needs to be investigated further. In conclusion, the use of sugarcane bagasse as a bio-coagulant precursor holds great promise for the future of sustainable water treatment. The potential for sugarcane bagasse to be used as a bio-coagulant precursor highlights the importance of exploring alternative and sustainable materials for water treatment.

6.
MethodsX ; 10: 102180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122364

RESUMO

Norfloxacin (NRFX) is one of a class of antibiotics known as broad-spectrum fluoroquinolone antibiotic that is frequently used to treat infectious disorders in both animals and humans. NRFX is considered an emergent pharmaceutical contaminate. This review's objective is to evaluate empirical data on NRFX's removal from aqueous medium. The environmental danger of NRFX in the aquatic environment was validated by an initial ecotoxicological study. Graphene oxide/Metal Organic Framework (MOF) based composite, followed by Magnesium oxide/Chitosan/Graphene oxide composite gave the highest NRFX adsorption capacities (Qmax) of 1114.8 and 1000 mg/g, respectively. The main adsorption mechanisms for NRFX uptake include electrostatic interactions, H-bonds, π-π interactions, electron donor-acceptor interactions, hydrophobic interactions, and pore diffusion. The adsorptive uptake of NRFX were most suitably described by Langmuir isotherm and pseudo-second order implying adsorbate-to-adsorbent electron transfer on a monolayer surface. The thermodynamics of NRFX uptake is heavily dependent on the makeup of the adsorbent, and the selection of the eluent for desorption from the solid phase is equally important. There were detected knowledge gaps in column studies and adsorbent disposal method. There's great interest in scale-up and industrial applications of research results that will aid in management of water resources for sustainability.

7.
Chemosphere ; 308(Pt 2): 136371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088967

RESUMO

Persistent organic pollutants (POPs) are toxic chemicals that stay in the environment for a long time. To address the toxicity issues, global nations, including 53 African countries, ratified the Stockholm Convention to minimize or eliminate the production of 12 POPs known as the "Dirty Dozen". However, these Dirty Dozen Chemicals (DDCs) still exist in significant concentration in the African environment, prompting numerous research to investigate the level of their occurrences. Here, we conducted a bibliometric analysis to examine the publication trends in DDCs-related research in Africa using articles published between 1949 and 2021 from the Web of Science and Scopus databases. A total of 884 articles were published within the survey period, with a publication/author and author/publication ratio of 0.36 and 2.76, respectively. South Africa ranked first in terms of number of publications (n = 133, 15.05%), and total citations (n = 3115), followed by Egypt (n = 117), Nigeria (n = 77), USA (n = 40), and Ghana (n = 38). Research collaboration was relatively high (collaboration index = 2.88). The insignificant difference between the theoretical and observed Lotka's distribution indicates Lotka's law does not fit the DDC literature. An annual growth rate of 0.57% implies that a substantial increase of articles in years to come is not expected. More research programs should be established in other African countries to measure up to South Africa's supremacy. This is critical in order to provide a basis for effective compliance to the Stockholm Convention on POPs in Africa.


Assuntos
Poluentes Ambientais , Poluentes Orgânicos Persistentes , Bibliometria , Egito , Poluentes Ambientais/análise , Gana
8.
Environ Res ; 212(Pt A): 113123, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35339467

RESUMO

The intensification of urbanisation and industrial activities significantly exacerbates the distribution of toxic contaminations into the aqueous environment. Persistent organic pollutants (POPs) have received considerable attention in the past few decades because of their persistence, long-distance migration, potential bioaccumulation, latent toxicity for humans and wildlife. There is no doubt that POPs cause serious effects on the global ecosystem. Therefore, it is necessary to develop a simple, safe and sustainable approach to remove POPs from water bodies. Among other conventional techniques, the adsorption process has proven to be a more effective method for eliminating POPs and to a larger extent meet discharge regulations. Nanomaterials can effectively adsorb POPs from aqueous solutions. For most POPs, a >70% adsorptive removal efficiency was achieved. The major mechanisms for POPS uptake by nano-adsorbents includes electrostatic interaction, hydrophobic (van der Waals, π-π and electron donor-acceptor) interaction and hydrogen bonding. Nano-adsorbent can sustain a >90% POPs adsorptive removal for about 3 cycles and reuseable for up to 10 cycles. Challenges around adsorbent ecotoxicity and safe disposal were also discussed. The present review evaluated recent research outcomes on nanomaterials that are employed to remove POPs in water systems.


Assuntos
Poluentes Orgânicos Persistentes , Poluentes Químicos da Água , Adsorção , Ecossistema , Humanos , Água/química , Poluentes Químicos da Água/análise
9.
Environ Sci Pollut Res Int ; 29(8): 11004-11026, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35001268

RESUMO

Researchers in recent years have utilized a broad spectrum of treatment technologies in treating bakers' yeast production wastewater. This paper aims to review the treatment technologies for the wastewater, compare the process technologies, discuss recent innovations, and propose future perspectives in the research area. The review observed that nanofiltration was the most effective membrane process for the treatment of the effluent (at >95% pollutant rejection). Other separation processes like adsorption and distillation had technical challenges of desorption, a poor fit for high pollutant load and cost limitations. Chemical treatment processes have varying levels of success but they are expensive and produce toxic sludge. Sludge production would be a hurdle when product recovery and reuse are targeted. It is difficult to make an outright choice of the best process for treating the effluent because each has its merits and demerits and an appropriate choice can be made when all factors are duly considered. The process intensification of the industrial-scale production of the bakers' yeast process will be a very direct approach, where the process optimisation, zero effluent discharge, and enhanced recovery of value-added product from the waste streams are important approaches that need to be taken into account.


Assuntos
Saccharomyces cerevisiae , Águas Residuárias , Destilação , Esgotos , Tecnologia , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
10.
Biol Trace Elem Res ; 200(10): 4476-4492, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34813030

RESUMO

Aquaculture is one of the fastest growing agro-industries as it presently accounts for nearly 50% of all fish for direct human consumption and 43% of total seafood supply. Fish provide about 20% average daily intake of animal protein for about 3.2 billion people globally. The treatment of aquaculture in recent years for the mitigation of heavy metals and other contaminants has been gaining traction due to the benefits of aquaculture to both man and the environment. This paper provides a review of the sources, impacts, and the various methods that have been deployed in recent years by various researchers for the treatment of heavy metal contaminated aquaculture. Related works of literature were obtained and compiled from academic search databases and were carefully analysed in this study. The dangers these metals pose to the sustainability of aquaculture were studied in this review. Studies indicate that some heavy metals, such as mercury, lead, and cadmium, due to their long-term persistence in the environment, allow them to accumulate in the food chain. Mitigation techniques such as adsorption, bio-sorption, and phytoremediation have been deployed for the treatment of heavy metal contaminated aquaculture. Some research gaps were also highlighted which could form the basis for future research, such as research centred on the effects of these metals on the embryonic development of aquaculture organisms and the alterations the metals caused in their stages of development.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Animais , Aquicultura , Monitoramento Ambiental , Peixes/metabolismo , Humanos , Mercúrio/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA