Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
PLoS One ; 14(12): e0226640, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891585

RESUMO

Human red blood cells (RBCs) need to deform in order to pass through capillaries in human vasculature with diameter smaller than that of the RBC. An altered RBC cell membrane stiffness (CMS), thereby, is likely to have consequences on their flow rate. RBC CMS is known to be affected by several commonly encountered disease conditions. This study was carried out to investigate whether an increase in RBC CMS, to the extent seen in such commonly encountered medical conditions, affects the RBC flow rate through channels with diameters comparable to that of the RBC. To do this, we use RBCs extracted from a healthy individual with no known medical conditions and treated with various concentrations of Bovine Serum Albumin (BSA). We study their flow through polycarbonate membranes with pores of diameter 5µm and 8µm which are smaller than and comparable to the RBC diameter respectively. The studies are carried out at constant hematocrit and volumetric flow rate. We find that when the diameter of the capillary is smaller than that of the RBC, the flow rate of the RBCs is lowered as the concentration of BSA is increased while the reverse is true when the diameter is comparable to that of the RBC. We confirm that this is a consequence of altered CMS of the RBCs from their reorientation dynamics in an Optical Tweezer. We find that a treatment with 0.50mg/ml BSA mimics the situation for RBCs extracted from a healthy individual while concentrations higher than 0.50mg/ml elevate the RBC CMS across a range expected for individuals with a condition of hyperglycemia. Using a simple theoretical model of the RBC deformation process at the entry of a narrow channel, we extract the RBC membrane bending modulus from their flow rate.


Assuntos
Deformação Eritrocítica/fisiologia , Membrana Eritrocítica/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo , Filtração , Humanos , Hiperglicemia/sangue , Filtros Microporos , Pessoa de Meia-Idade , Modelos Biológicos , Pinças Ópticas
3.
Appl Opt ; 55(3): 585-94, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26835934

RESUMO

We have studied in detail the situation wherein two microbeads are trapped axially in a single-beam Gaussian intensity profile optical trap. We find that the corner frequency extracted from a power spectral density analysis of intensity fluctuations recorded on a quadrant photodetector (QPD) is dependent on the detection scheme. Using forward- and backscattering detection schemes with single and two laser wavelengths along with computer simulations, we conclude that fluctuations detected in backscattering bear true position information of the bead encountered first in the beam propagation direction. Forward scattering, on the other hand, carries position information of both beads with substantial contribution from the bead encountered first along the beam propagation direction. Mie scattering analysis further reveals that the interference term from the scattering of the two beads contributes significantly to the signal, precluding the ability to resolve the positions of the individual beads in forward scattering. In QPD-based detection schemes, detection through backscattering, thereby, is imperative to track the true displacements of axially trapped microbeads for possible studies on light-mediated interbead interactions.

4.
J Biomed Opt ; 18(2): 25001, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23381225

RESUMO

We report here on studies of reorientation of human red blood cells (RBCs) in an optical trap. We have measured the time required, tre, for the plane of the RBC entering the optical trap to undergo a 90-deg rotation to acquire an edge on orientation with respect to the beam direction. This has been studied as a function of laser power, P, at the trap center. The variation of tre with increasing P shows an initial sharp decrease followed by a much smaller rate of further decrease. We find that this experimentally measured variation is not in complete agreement with the variation predicted by a theoretical model where the RBC is treated as a perfectly rigid circular disk-like body. We argue that this deviation arises due to deformation of the RBC. We further reason that this feature is dominated by the elastic behavior of the RBC membrane. We compare the studies carried out on normal RBCs with RBCs where varying conditions of membrane stiffness are expected. We propose that the value of energy used for maximum deformation possible during a reorientation process is an indicator of the membrane elasticity of the system under study.


Assuntos
Eritrócitos/citologia , Pinças Ópticas , Forma Celular/fisiologia , Deformação Eritrocítica/fisiologia , Eritrócitos/fisiologia , Humanos , Hiperglicemia/sangue , Modelos Biológicos , Dispositivos Ópticos , Fenômenos Ópticos , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA