Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Mol Neurobiol ; 41(8): 1687-1706, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32785863

RESUMO

Neurotrauma especially traumatic brain injury (TBI) is the leading cause of death and disability worldwide. To improve upon the early diagnosis and develop precision-targeted therapies for TBI, it is critical to understand the underlying molecular mechanisms and signaling pathways. The transcription factor, nuclear factor kappa B (NFκB), which is ubiquitously expressed, plays a crucial role in the normal cell survival, proliferation, differentiation, function, as well as in disease states like neuroinflammation and neurodegeneration. Here, we hypothesized that real-time noninvasive bioluminescence molecular imaging allows rapid and precise monitoring of TBI-induced immediate and rapid spatio-temporal activation of NFκB signaling pathway in response to Glia maturation factor (GMF) upregulation which in turn leads to neuroinflammation and neurodegeneration post-TBI. To test and validate our hypothesis and to gain novel mechanistic insights, we subjected NFκB-RE-Luc transgenic male and female mice to TBI and performed real-time noninvasive bioluminescence imaging (BLI) as well as photoacoustic and ultrasound imaging (PAI). Our BLI data revealed that TBI leads to an immediate and sustained activation of NFκB signaling. Further, our BLI data suggest that especially in male NFκB-RE-Luc transgenic mice subjected to TBI, in addition to brain, there is widespread activation of NFκB signaling in multiple organs. However, in the case of the female NFκB-RE-Luc transgenic mice, TBI induces a very specific and localized activation of NFκB signaling in the brain. Further, our microRNA data suggest that TBI induces significant upregulation of mir-9-5p, mir-21a-5p, mir-34a-5p, mir-16-3p, as well as mir-155-5p within 24 h and these microRNAs can be successfully used as TBI-specific biomarkers. To the best of our knowledge, this is one of the first and unique study of its kind to report immediate and sustained activation of NFκB signaling post-TBI in a gender-specific manner by utilizing real-time non-invasive BLI and PAI in NFκB-RE-Luc transgenic mice. Our study will prove immensely beneficial to gain novel mechanistic insights underlying TBI, unravel novel therapeutic targets, as well as enable us to monitor in real-time the response to innovative TBI-specific precision-targeted gene and stem cell-based precision medicine.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Fator de Maturação da Glia/metabolismo , Medições Luminescentes/métodos , NF-kappa B/metabolismo , Técnicas Fotoacústicas/métodos , Caracteres Sexuais , Ultrassonografia de Intervenção/métodos , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Sistemas Computacionais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
2.
Neurotox Res ; 39(2): 359-368, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32955722

RESUMO

Acute traumatic brain injury (TBI) leads to neuroinflammation, neurodegeneration, cognitive decline, psychological disorders, increased blood-brain barrier (BBB) permeability, and microvascular damage in the brain. Inflammatory mediators secreted from activated glial cells, neurons, and mast cells are implicated in the pathogenesis of TBI through secondary brain damage. Abnormalities or damage to the neurovascular unit is the indication of secondary injuries in the brain after TBI. However, the precise mechanisms of molecular and ultrastructural neurovascular alterations involved in the pathogenesis of acute TBI are not yet clearly understood. Moreover, currently, there are no precision-targeted effective treatment options to prevent the sequelae of TBI. In this study, mice were subjected to closed head weight-drop-induced acute TBI and evaluated neuroinflammatory and neurovascular alterations in the brain by immunofluorescence staining or quantitation by enzyme-linked immunosorbent assay (ELISA) procedure. Mast cell stabilizer drug cromolyn was administered to inhibit the neuroinflammatory response of TBI. Results indicate decreased level of pericyte marker platelet-derived growth factor receptor-beta (PDGFR-ß) and BBB-associated tight junction proteins junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) in the brains 7 days after weight-drop-induced acute TBI as compared with the brains from sham control mice indicating acute TBI-associated BBB/tight junction protein disruption. Further, the administration of cromolyn drug significantly inhibited acute TBI-associated decrease of PDGFR-ß, JAM-A, and ZO-1 in the brain. These findings suggest that acute TBI causes BBB/tight junction damage and that cromolyn administration could protect this acute TBI-induced brain damage as well as its long-time consequences.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Transtornos Cerebrovasculares/metabolismo , Encefalite/metabolismo , Animais , Encéfalo/irrigação sanguínea , Lesões Encefálicas Traumáticas/complicações , Transtornos Cerebrovasculares/etiologia , Encefalite/etiologia , Masculino , Camundongos , Neurônios/metabolismo
4.
Biofactors ; 47(2): 190-197, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33098588

RESUMO

Neuroinflammation leads to neurodegeneration, cognitive defects, and neurodegenerative disorders. Neurotrauma/traumatic brain injury (TBI) can cause activation of glial cells, neurons, and neuroimmune cells in the brain to release neuroinflammatory mediators. Neurotrauma leads to immediate primary brain damage (direct damage), neuroinflammatory responses, neuroinflammation, and late secondary brain damage (indirect) through neuroinflammatory mechanism. Secondary brain damage leads to chronic inflammation and the onset and progression of neurodegenerative diseases. Currently, there are no effective and specific therapeutic options to treat these brain damages or neurodegenerative diseases. Flavone luteolin is an important natural polyphenol present in several plants that show anti-inflammatory, antioxidant, anticancer, cytoprotective, and macrophage polarization effects. In this short review article, we have reviewed the neuroprotective effects of luteolin in neurotrauma and neurodegenerative disorders and pathways involved in this mechanism. We have collected data for this study from publications in the PubMed using the keywords luteolin and mast cells, neuroinflammation, neurodegenerative diseases, and TBI. Recent reports suggest that luteolin suppresses systemic and neuroinflammatory responses in Coronavirus disease 2019 (COVID-19). Studies have shown that luteolin exhibits neuroprotective effects through various mechanisms, including suppressing immune cell activation, such as mast cells, and inflammatory mediators released from these cells. In addition, luteolin can suppress neuroinflammatory response, activation of microglia and astrocytes, oxidative stress, neuroinflammation, and the severity of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and TBI pathogenesis. In conclusion, luteolin can improve cognitive decline and enhance neuroprotection in neurodegenerative diseases, TBI, and stroke.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Tratamento Farmacológico da COVID-19 , Inflamação/tratamento farmacológico , Luteolina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/virologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/virologia , COVID-19/complicações , COVID-19/virologia , Flavonas/uso terapêutico , Humanos , Inflamação/complicações , Inflamação/virologia , Neurônios/efeitos dos fármacos , Neurônios/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
5.
Nat Metab ; 2(11): 1265-1283, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199924

RESUMO

Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation. These M1-like macrophages express high levels of the NAD-consuming enzyme CD38 and have enhanced CD38-dependent NADase activity, thereby reducing tissue NAD levels. We also find that senescent cells progressively accumulate in visceral white adipose tissue and liver during ageing and that inflammatory cytokines secreted by senescent cells (the senescence-associated secretory phenotype, SASP) induce macrophages to proliferate and express CD38. These results uncover a new causal link among resident tissue macrophages, cellular senescence and tissue NAD decline during ageing and offer novel therapeutic opportunities to maintain NAD levels during ageing.


Assuntos
ADP-Ribosil Ciclase 1/genética , Envelhecimento/metabolismo , Senescência Celular , Ativação de Macrófagos , Glicoproteínas de Membrana/genética , NAD/metabolismo , ADP-Ribosil Ciclase/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Antígenos CD/metabolismo , Citocinas/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Glicólise/genética , Humanos , Fígado/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , NAD+ Nucleosidase/metabolismo
6.
Mediators Inflamm ; 2020: 4243953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684835

RESUMO

Traumatic brain injury (TBI) is one of the major health problems worldwide that causes death or permanent disability through primary and secondary damages in the brain. TBI causes primary brain damage and activates glial cells and immune and inflammatory cells, including mast cells in the brain associated with neuroinflammatory responses that cause secondary brain damage. Though the survival rate and the neurological deficiencies have shown significant improvement in many TBI patients with newer therapeutic options, the underlying pathophysiology of TBI-mediated neuroinflammation, neurodegeneration, and cognitive dysfunctions is understudied. In this study, we analyzed mast cells and neuroinflammation in weight drop-induced TBI. We analyzed mast cell activation by toluidine blue staining, serum chemokine C-C motif ligand 2 (CCL2) level by enzyme-linked immunosorbent assay (ELISA), and proteinase-activated receptor-2 (PAR-2), a mast cell and inflammation-associated protein, vascular endothelial growth factor receptor 2 (VEGFR2), and blood-brain barrier tight junction-associated claudin 5 and Zonula occludens-1 (ZO-1) protein expression in the brains of TBI mice. Mast cell activation and its numbers increased in the brains of 24 h and 72 h TBI when compared with sham control brains without TBI. Mouse brains after TBI show increased CCL2, PAR-2, and VEGFR2 expression and derangement of claudin 5 and ZO-1 expression as compared with sham control brains. TBI can cause mast cell activation, neuroinflammation, and derangement of tight junction proteins associated with increased BBB permeability. We suggest that inhibition of mast cell activation can suppress neuroimmune responses and glial cell activation-associated neuroinflammation and neurodegeneration in TBI.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Mastócitos/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Quimiocina CCL2/sangue , Claudina-5/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
7.
Neuroscientist ; 26(5-6): 402-414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684080

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. Therapeutic options are now limited to COVID-19. The hallmark of COVID-19 pathogenesis is the cytokine storm with elevated levels of interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-alpha (TNF-α), chemokine (C-C-motif) ligand 2 (CCL2), and granulocyte-macrophage colony-stimulating factor (GM-CSF). COVID-19 can cause severe pneumonia, and neurological disorders, including stroke, the damage to the neurovascular unit, blood-brain barrier disruption, high intracranial proinflammatory cytokines, and endothelial cell damage in the brain. Mast cells are innate immune cells and also implicated in adaptive immune response, systemic inflammatory diseases, neuroinflammatory diseases, traumatic brain injury and stroke, and stress disorders. SARS-CoV-2 can activate monocytes/macrophages, dendritic cells, T cells, mast cells, neutrophils, and induce cytokine storm in the lung. COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Citocinas/imunologia , Mastócitos/imunologia , Doenças do Sistema Nervoso/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/fisiopatologia , Estresse Psicológico/fisiopatologia , COVID-19 , Infecções por Coronavirus/complicações , Humanos , Mastócitos/virologia , Doenças do Sistema Nervoso/complicações , Pandemias , Pneumonia Viral/complicações , SARS-CoV-2
8.
Exp Neurobiol ; 29(3): 230-248, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32565489

RESUMO

Traumatic brain injury (TBI) causes disability and death, accelerating the progression towards Alzheimer's disease and Parkinson's disease (PD). TBI causes serious motor and cognitive impairments, as seen in PD that arise during the period of the initial insult. However, this has been understudied relative to TBI induced neuroinflammation, motor and cognitive decline that progress towards PD. Neuronal ubiquitin-C-terminal hydrolase- L1 (UCHL1) is a thiol protease that breaks down ubiquitinated proteins and its level represents the severity of TBI. Previously, we demonstrated the molecular action of glia maturation factor (GMF); a proinflammatory protein in mediating neuroinflammation and neuronal loss. Here, we show that the weight drop method induced TBI neuropathology using behavioral tests, western blotting, and immunofluorescence techniques on sections from wild type (WT) and GMF-deficient (GMF-KO) mice. Results reveal a significant improvement in substantia nigral tyrosine hydroxylase and dopamine transporter expression with motor behavioral performance in GMF-KO mice following TBI. In addition, a significant reduction in neuroinflammation was manifested, as shown by activation of nuclear factor-kB, reduced levels of inducible nitric oxide synthase, and cyclooxygenase- 2 expressions. Likewise, neurotrophins including brain-derived neurotrophic factor and glial-derived neurotrophic factor were significantly improved in GMF-KO mice than WT 72 h post-TBI. Consistently, we found that TBI enhances GFAP and UCHL-1 expression and reduces the number of dopaminergic TH-positive neurons in WT compared to GMF-KO mice 72 h post-TBI. Interestingly, we observed a reduction of THpositive tanycytes in the median eminence of WT than GMF-KO mice. Overall, we found that absence of GMF significantly reversed these neuropathological events and improved behavioral outcome. This study provides evidence that PD-associated pathology progression can be initiated upon induction of TBI.

9.
Clin Ther ; 42(6): 974-982, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32184013

RESUMO

PURPOSE: Psychological stress is a significant health problem in veterans and their family members. Traumatic brain injury (TBI) and stress lead to the onset, progression, and worsening of several inflammatory and neurodegenerative diseases in veterans and civilians. Alzheimer's disease (AD) is a progressive, irreversible neuroinflammatory disease that causes problems with memory, thinking, and behavior. TBIs and chronic psychological stress cause and accelerate the pathology of neuroinflammatory diseases such as AD. However, the precise molecular and cellular mechanisms governing neuroinflammation and neurodegeneration are currently unknown, especially in veterans. The purpose of this review article was to advance the hypothesis that stress and TBI-mediated immune response substantially contribute and accelerate the pathogenesis of AD in veterans and their close family members and civilians. METHODS: The information in this article was collected and interpreted from published articles in PubMed between 1985 and 2020 using the key words stress, psychological stress, Afghanistan war, Operation Enduring Freedom (OEF), Iraq War, Operation Iraqi Freedom (OIF), Operation New Dawn (OND), traumatic brain injury, mast cell and stress, stress and neuroimmune response, stress and Alzheimer's disease, traumatic brain injury, and Alzheimer's disease. FINDINGS: Chronic psychological stress and brain injury induce the generation and accumulation of beta-amyloid peptide, amyloid plaques, neurofibrillary tangles, and phosphorylation of tau in the brain, thereby contributing to AD pathogenesis. Active military personnel and veterans are under enormous psychological stress due to various war-related activities, including TBIs, disabilities, fear, new environmental conditions, lack of normal life activities, insufficient communications, explosions, military-related noise, and health hazards. Brain injury, stress, mast cell, and other immune cell activation can induce headache, migraine, dementia, and upregulate neuroinflammation and neurodegeneration in veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn. TBIs, posttraumatic stress disorder, psychological stress, pain, glial activation, and dementia in active military personnel, veterans, or their family members can cause AD several years later in their lives. We suggest that there are increasing numbers of veterans with TBIs and stress and that these veterans may develop AD late in life if no appropriate therapeutic intervention is available. IMPLICATIONS: Per these published reports, the fact that TBIs and psychological stress can accelerate the pathogenesis of AD should be recognized. Active military personnel, veterans, and their close family members should be evaluated regularly for stress symptoms to prevent the pathogenesis of neurodegenerative diseases, including AD.


Assuntos
Campanha Afegã de 2001- , Doença de Alzheimer/epidemiologia , Lesões Encefálicas/epidemiologia , Guerra do Iraque 2003-2011 , Estresse Psicológico/epidemiologia , Veteranos/psicologia , Doença de Alzheimer/imunologia , Lesões Encefálicas/imunologia , Humanos , Estresse Psicológico/imunologia
10.
Brain Behav Immun ; 87: 429-443, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31982500

RESUMO

The molecular mechanism mediating degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD) is not yet fully understood. Previously, we have shown the contribution of glia maturation factor (GMF), a proinflammatory protein in dopaminergic neurodegeneration mediated by activation of mast cells (MCs). In this study, methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal neurodegeneration and astro-glial activations were determined by western blot and immunofluorescence techniques in wild type (WT) mice, MC-deficient (MC-KO) mice and GMF-deficient (GMF-KO) mice, with or without MC reconstitution before MPTP administration. We show that GMF-KO in the MCs reduces the synergistic effects of MC and Calpain1 (calcium-activated cysteine protease enzyme)-dependent dopaminergic neuronal loss that reduces motor behavioral impairments in MPTP-treated mouse. Administration of MPTP increase in calpain-mediated proteolysis in nigral dopaminergic neurons further resulting in motor decline in mice. We found that MPTP administered WT mice exhibits oxidative stress due to significant increases in the levels of malondialdehyde, superoxide dismutase and reduction in the levels of reduced glutathione and glutathione peroxidase activity as compared with both MC-KO and GMF-KO mice. The number of TH-positive neurons in the ventral tegmental area, substantia nigra and the fibers in the striatum were significantly reduced while granulocyte macrophage colony-stimulating factor (GM-CSF), MC-Tryptase, GFAP, IBA1, Calpain1 and intracellular adhesion molecule 1 expression were significantly increased in WT mice. Similarly, tyrosine hydroxylase, dopamine transporters and vesicular monoamine transporters 2 proteins expression were significantly reduced in the SN of MPTP treated WT mice. The motor behavior as analyzed by rotarod and hang test was significantly reduced in WT mice as compared with both the MC-KO and GMF-KO mice. We conclude that GMF-dependent MC activation enhances the detrimental effect of astro-glial activation-mediated oxidative stress and neuroinflammation in the midbrain, and its inhibition may slowdown the progression of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Neurônios Dopaminérgicos/metabolismo , Fator de Maturação da Glia , Microglia/metabolismo , Animais , Modelos Animais de Doenças , Dopamina , Fator de Maturação da Glia/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Substância Negra/metabolismo
11.
Neuroscientist ; 26(2): 134-155, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31092147

RESUMO

Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/metabolismo , Inflamação/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/fisiopatologia
12.
Proc Natl Acad Sci U S A ; 116(47): 23671-23681, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31690657

RESUMO

Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Dendríticas/imunologia , Estresse do Retículo Endoplasmático/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d/biossíntese , Antígenos CD1d/imunologia , Autoantígenos/imunologia , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citoesqueleto/ultraestrutura , Endossomos/imunologia , Glicoesfingolipídeos/imunologia , Glicoesfingolipídeos/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Lipídeos/imunologia , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células THP-1 , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/imunologia , eIF-2 Quinase/deficiência , eIF-2 Quinase/fisiologia
13.
J Neuroimmune Pharmacol ; 14(4): 608-641, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31011884

RESUMO

Despite significant advancements in the field of molecular neurobiology especially neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying neurodegenerative diseases remain elusive. As a result, the development of the next generation neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of genome editing offer a new template for dissecting the precise molecular pathways underlying the complex neurodegenerative disorders. We believe that the innovative genome and transcriptome editing strategies offer an excellent opportunity to decipher novel therapeutic targets, develop novel neurodegenerative disease models, develop neuroimaging modalities, develop next-generation diagnostics as well as develop patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Frontotemporal dementia etc. Here, we review the latest developments in the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding its translational potential to improve the treatment outcomes and minimize financial burden. However, despite significant advancements, we would caution the scientific community that since the CRISPR field is still evolving, currently we do not know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding CRISPR-edited human babies being born in China, we urge the scientific community to maintain high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish model, in vivo testing in nonhuman primates and lower vertebrates and for the development of neurotherapeutics for the currently incurable neurodegenerative disorders. Graphical Abstract.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/tendências , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Medicina de Precisão/tendências , Animais , Edição de Genes/métodos , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Medicina de Precisão/métodos , Resultado do Tratamento
14.
Front Cell Neurosci ; 13: 54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837843

RESUMO

Mast cell activation plays an important role in stress-mediated disease pathogenesis. Chronic stress cause or exacerbate aging and age-dependent neurodegenerative diseases. The severity of inflammatory diseases is worsened by the stress. Mast cell activation-dependent inflammatory mediators augment stress associated pain and neuroinflammation. Stress is the second most common trigger of headache due to mast cell activation. Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disease that affects more women than men and woman's increased susceptibility to chronic stress could increase the risk for AD. Modern life-related stress, social stress, isolation stress, restraint stress, early life stress are associated with an increased level of neurotoxic beta amyloid (Aß) peptide. Stress increases cognitive dysfunction, generates amyloid precursor protein (APP), hyperphosphorylated tau, neurofibrillary tangles (NFTs), and amyloid plaques (APs) in the brain. Stress-induced Aß persists for years and generates APs even several years after the stress exposure. Stress activates hypothalamic-pituitary adrenal (HPA) axis and releases corticotropin-releasing hormone (CRH) from hypothalamus and in peripheral system, which increases the formation of Aß, tau hyperphosphorylation, and blood-brain barrier (BBB) disruption in the brain. Mast cells are implicated in nociception and pain. Mast cells are the source and target of CRH and other neuropeptides that mediate neuroinflammation. Microglia express receptor for CRH that mediate neurodegeneration in AD. However, the exact mechanisms of how stress-mediated mast cell activation contribute to the pathogenesis of AD remains elusive. This mini-review highlights the possible role of stress and mast cell activation in neuroinflammation, BBB, and tight junction disruption and AD pathogenesis.

16.
Mol Neurobiol ; 56(1): 378-393, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29704201

RESUMO

Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disorder that leads to severe cognitive impairment in elderly patients. Chronic neuroinflammation plays an important role in the AD pathogenesis. Glia maturation factor (GMF), a proinflammatory molecule discovered in our laboratory, is significantly upregulated in various regions of AD brains. We have previously reported that GMF is predominantly expressed in the reactive glial cells surrounding the amyloid plaques (APs) in the mouse and human AD brain. Microglia are the major source of proinflammatory cytokines and chemokines including GMF. Recently clustered regularly interspaced short palindromic repeats (CRISPR) based genome editing has been recognized to study the functions of genes that are implicated in various diseases. Here, we investigated if CRISPR-Cas9-mediated GMF gene editing leads to inhibition of GMF expression and suppression of microglial activation. Confocal microscopy of murine BV2 microglial cell line transduced with an adeno-associated virus (AAV) coexpressing Staphylococcus aureus (Sa) Cas9 and a GMF-specific guide RNA (GMF-sgRNA) revealed few cells expressing SaCas9 while lacking GMF expression, thereby confirming successful GMF gene editing. To further improve GMF gene editing efficiency, we developed lentiviral vectors (LVs) expressing either Streptococcus pyogenes (Sp) Cas9 or GMF-sgRNAs. BV2 cells cotransduced with LVs expressing SpCas9 and GMF-sgRNAs revealed reduced GMF expression and the presence of indels in the exons 2 and 3 of the GMF coding sequence. Lipopolysaccharide (LPS) treatment of GMF-edited cells led to reduced microglial activation as shown by reduced p38 MAPK phosphorylation. We believe that targeted in vivo GMF gene editing has a significant potential for developing a unique and novel AD therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Edição de Genes , Fator de Maturação da Glia/genética , Microglia/metabolismo , Terapia de Alvo Molecular , Animais , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Dependovirus/metabolismo , Fator de Maturação da Glia/metabolismo , Lentivirus/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , RNA Guia de Cinetoplastídeos/metabolismo , Transdução Genética
17.
Mol Neurobiol ; 56(3): 1681-1693, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29916143

RESUMO

Inflammatory mediators released from activated microglia, astrocytes, neurons, and mast cells mediate neuroinflammation. Parkinson's disease (PD) is characterized by inflammation-dependent dopaminergic neurodegeneration in substantia nigra. 1-Methyl-4-phenylpyridinium (MPP+), a metabolite of parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), induces inflammatory mediators' release from brain cells and mast cells. Brain cells' interaction with mast cells is implicated in neuroinflammation. However, the exact mechanisms involved are not yet clearly understood. Mouse fetal brain-derived cultured primary astrocytes and glia-neurons were incubated with mouse mast cell protease-6 (MMCP-6) and MMCP-7, and mouse bone marrow-derived mast cells (BMMCs) were incubated with MPP+ and brain protein glia maturation factor (GMF). Interleukin-33 (IL-33) released from these cells was quantitated by enzyme-linked immunosorbent assay. Both MMCP-6 and MMCP-7 induced IL-33 release from astrocytes and glia-neurons. MPP+ and GMF were used as a positive control-induced IL-33 and reactive oxygen species expression in mast cells. Mast cell proteases and MPP+ activate p38 and extracellular signal-regulated kinases 1/2 (ERK1/2), mitogen-activated protein kinases (MAPKs), and transcription factor nuclear factor-kappa B (NF-κB) in astrocytes, glia-neurons, or mast cells. Addition of BMMCs from wt mice and transduction with adeno-GMF show higher chemokine (C-C motif) ligand 2 (CCL2) release. MPP+ activated glial cells and reduced microtubule-associated protein 2 (MAP-2) expression indicating neurodegeneration. IL-33 expression increased in the midbrain and striatum of PD brains as compared with age- and sex-matched control subjects. Glial cells and neurons interact with mast cells and accelerate neuroinflammation and these interactions can be explored as a new therapeutic target to treat PD.


Assuntos
Astrócitos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-33/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Triptases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Corpo Estriado/metabolismo , Humanos , Mastócitos/metabolismo , Mesencéfalo/metabolismo , Camundongos , Transdução de Sinais/fisiologia
18.
Open Access J Neurol Neurosurg ; 12(3): 79-82, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32775957

RESUMO

Alzheimer's disease (AD) is a neurodegenerative and neuroinflammatory disease characterized by the presence of extracellular amyloid plaques (APs) and intracellular neurofibrillary tangles (NFTs) in the brain. There is no disease modifying therapeutic options currently available for this disease. Hippocampus, entorhinal cortex (Broadmann area 28), perirhinal cortex (Broadmann area 35) and insular cortices are areas within the brain that are first ones to be severely affected in AD. Neuroinflammation is an important factor that induces neurodegeneration in AD. Glia maturation factor (GMF), a proinflammatory factor plays a crucial role in AD through activation of microglia and astrocytes to release proinflammatory mediators in the brain. Through immunohistochemical studies, we have previously shown that GMF is highly expressed in the vicinity of APs and NFTs in AD brains. Glial fibrillary acidic protein (GFAP), reactive astrocytes, ionized calcium binding adaptor molecule-1 (Iba-1) labelled activated microglia and GMF immunoreactive glial cells are increased in the entorhinal cortical layers especially at the sites of APs and Tau containing NFTs indicating a role for GMF. Overexpression of GMF in glial cells leads to neuroinflammation and neurodegeneration. Inhibition of GMF expression reduces neurodegeneration. Therefore, we suggest that GMF is a novel therapeutic target not only for AD but also for various other neurodegenerative diseases.

19.
Mol Neurobiol ; 56(6): 3865-3881, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30218400

RESUMO

Parkinson's disease (PD) is one of the several neurodegenerative diseases where accumulation of aggregated proteins like α-synuclein occurs. Dysfunction in autophagy leading to this protein build-up and subsequent dopaminergic neurodegeneration may be one of the causes of PD. The mechanisms that impair autophagy remain poorly understood. 1-Methyl-4-phenylpiridium ion (MPP+) is a neurotoxin that induces experimental PD in vitro. Our studies have shown that glia maturation factor (GMF), a brain-localized inflammatory protein, induces dopaminergic neurodegeneration in PD and that suppression of GMF prevents MPP+-induced loss of dopaminergic neurons. In the present study, we demonstrate a molecular action of GMF on the autophagic machinery resulting in dopaminergic neuronal loss and propose GMF-mediated autophagic dysfunction as one of the contributing factors in PD progression. Using dopaminergic N27 neurons, primary neurons from wild type (WT), and GMF-deficient (GMF-KO) mice, we show that GMF and MPP+ enhanced expression of MAPKs increased the mammalian target of rapamycin (mTOR) activation and endoplasmic reticulum stress markers such as phospho-eukaryotic translation initiation factor 2 alpha kinase 3 (p-PERK) and inositol-requiring enzyme 1α (IRE1α). Further, GMF and MPP+ reduced Beclin 1, focal adhesion kinase (FAK) family-interacting protein of 200 kD (FIP200), and autophagy-related proteins (ATGs) 3, 5, 7, 16L, and 12. The combined results demonstrate that GMF affects autophagy through autophagosome formation with significantly reduced lysosomal-associated membrane protein 1/2, and the number of autophagic acidic vesicles. Using primary neurons, we show that MPP+ treatment leads to differential expression and localization of p62/sequestosome and in GMF-KO neurons, there was a marked increase in p62 staining implying autophagy deficiency with very little co-localization of α-synuclein and p62 as compared with WT neurons. Collectively, this study provides a bidirectional role for GMF in executing dopaminergic neuronal death mediated by autophagy that is relevant to PD.


Assuntos
Autofagia , Neurônios Dopaminérgicos/metabolismo , Estresse do Retículo Endoplasmático , Fator de Maturação da Glia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Biomarcadores/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/enzimologia , Ativação Enzimática/efeitos dos fármacos , Fator de Maturação da Glia/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Agregados Proteicos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Proteína Sequestossoma-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/metabolismo
20.
J Alzheimers Dis ; 66(3): 1117-1129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30372685

RESUMO

Parkinson's disease (PD) is characterized by the presence of inflammation-mediated dopaminergic neurodegeneration in the substantia nigra. Inflammatory mediators from activated microglia, astrocytes, neurons, T-cells and mast cells mediate neuroinflammation and neurodegeneration. Administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induces PD like motor deficits in rodents. 1-methyl-4-phenylpyridinium (MPP+), a toxic metabolite of MPTP activates glial cells, neurons and mast cells to release neuroinflammatory mediators. Glia maturation factor (GMF), mast cells and proteinase activated receptor-2 (PAR-2) are implicated in neuroinflammation. Alpha-synuclein which induces neurodegeneration increases PAR-2 expression in the brain. However, the exact mechanisms are not yet understood. In this study, we quantified inflammatory mediators in the brains of MPTP-administered wild type (Wt), GMF-knockout (GMF-KO), and mast cell knockout (MC-KO) mice. Additionally, we analyzed the effect of MPP+, GMF, and mast cell proteases on PAR-2 expression in astrocytes and neurons in vitro. Results show that the levels of interleukin-1beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and the chemokine (C-C motif) ligand 2 (CCL2) were lesser in the brains of GMF-KO mice and MC-KO mice when compared to Wt mice brain after MPTP administration. Incubation of astrocytes and neurons with MPP+, GMF, and mouse mast cell protease-6 (MMCP-6) and MMCP-7 increased the expression of PAR-2. Our studies show that the absence of mast cells and GMF reduce the expression of neuroinflammatory mediators in the brain. We conclude that GMF along with mast cell interactions with glial cells and neurons during neuroinflammation can be explored as a new therapeutic target for PD and other neuroinflammatory disorders.


Assuntos
Encéfalo/metabolismo , Fator de Maturação da Glia/metabolismo , Mediadores da Inflamação/metabolismo , Mastócitos/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptor PAR-2/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimases/metabolismo , Quimases/farmacologia , Fator de Maturação da Glia/genética , Fator de Maturação da Glia/farmacologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA