Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 91, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637531

RESUMO

Luminescence constitutes a unique source of insight into hot carrier processes in metals, including those in plasmonic nanostructures used for sensing and energy applications. However, being weak in nature, metal luminescence remains poorly understood, its microscopic origin strongly debated, and its potential for unraveling nanoscale carrier dynamics largely unexploited. Here, we reveal quantum-mechanical effects in the luminescence emanating from thin monocrystalline gold flakes. Specifically, we present experimental evidence, supported by first-principles simulations, to demonstrate its photoluminescence origin (i.e., radiative emission from electron/hole recombination) when exciting in the interband regime. Our model allows us to identify changes to the measured gold luminescence due to quantum-mechanical effects as the gold film thickness is reduced. Excitingly, such effects are observable in the luminescence signal from flakes up to 40 nm in thickness, associated with the out-of-plane discreteness of the electronic band structure near the Fermi level. We qualitatively reproduce the observations with first-principles modeling, thus establishing a unified description of luminescence in gold monocrystalline flakes and enabling its widespread application as a probe of carrier dynamics and light-matter interactions in this material. Our study paves the way for future explorations of hot carriers and charge-transfer dynamics in a multitude of material systems.

2.
Nat Mater ; 22(9): 1094-1099, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37365227

RESUMO

The control of elastic and inelastic electron tunnelling relies on materials with well-defined interfaces. Two-dimensional van der Waals materials are an excellent platform for such studies. Signatures of acoustic phonons and defect states have been observed in current-to-voltage measurements. These features can be explained by direct electron-phonon or electron-defect interactions. Here we use a tunnelling process that involves excitons in transition metal dichalcogenides (TMDs). We study tunnel junctions consisting of graphene and gold electrodes separated by hexagonal boron nitride with an adjacent TMD monolayer and observe prominent resonant features in current-to-voltage measurements appearing at bias voltages that correspond to TMD exciton energies. By placing the TMD outside of the tunnelling pathway, we demonstrate that this tunnelling process does not require any charge injection into the TMD. The appearance of such optical modes in electrical transport introduces additional functionality towards van der Waals material-based optoelectronic devices.

3.
Sci Adv ; 8(47): eabo7853, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427323

RESUMO

The inelastic interaction between flying particles and optical nanocavities gives rise to entangled states in which some excitations of the latter are paired with momentum changes in the former. Specifically, free-electron entanglement with nanocavity modes opens appealing opportunities associated with the strong interaction capabilities of the electrons. However, the achievable degree of entanglement is currently limited by the lack of control over the resulting state mixtures. Here, we propose a scheme to generate pure entanglement between designated optical-cavity excitations and separable free-electron states. We shape the electron wave function profile to select the accessible cavity modes and simultaneously associate them with targeted electron scattering directions. This concept is exemplified through theoretical calculations of free-electron entanglement with degenerate and nondegenerate plasmon modes in silver nanoparticles and atomic vibrations in an inorganic molecule. The generated entanglement can be further propagated through its electron component to extend quantum interactions beyond existing protocols.

4.
Nano Lett ; 22(21): 8455-8462, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305718

RESUMO

High-harmonic generation (HHG), an extreme nonlinear optical phenomenon beyond the perturbation regime, is of great significance for various potential applications, such as high-energy ultrashort pulse generation with outstanding spatiotemporal coherence. However, efficient active control of HHG is still challenging due to the weak light-matter interaction displayed by currently known materials. Here, we demonstrate optically controlled HHG in monolayer semiconductors via the engineering of interband polarization. We find that HHG can be efficiently controlled in the excitonic spectral region with modulation depths up to 95% and ultrafast response speeds of several picoseconds. Quantitative time-domain theory of the nonlinear optical susceptibilities in monolayer semiconductors further corroborates these experimental observations. Our demonstration not only offers an in-depth understanding of HHG but also provides an effective approach toward active optical devices for strong-field physics and extreme nonlinear optics.

5.
Adv Mater ; 34(3): e2107104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34743375

RESUMO

Electronic states and their dynamics are of critical importance for electronic and optoelectronic applications. Here, various relevant electronic states in monolayer MoS2 , such as multiple excitonic Rydberg states and free-particle energy bands are probed with a high relative contrast of up to ≥200 via broadband (from ≈1.79 to 3.10 eV) static third-harmonic spectroscopy (THS), which is further supported by theoretical calculations. Moreover, transient THS is introduced to demonstrate that third-harmonic generation can be all-optically modulated with a modulation depth exceeding ≈94% at ≈2.18 eV, providing direct evidence of dominant carrier relaxation processes associated with carrier-exciton and carrier-phonon interactions. The results indicate that static and transient THS are not only promising techniques for the characterization of monolayer semiconductors and their heterostructures, but also a potential platform for disruptive photonic and optoelectronic applications, including all-optical modulation and imaging.

6.
ACS Photonics ; 8(8): 2320-2328, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34476288

RESUMO

All-optical control of nonlinear photonic processes in nanomaterials is of significant interest from a fundamental viewpoint and with regard to applications ranging from ultrafast data processing to spectroscopy and quantum technology. However, these applications rely on a high degree of control over the nonlinear response, which still remains elusive. Here, we demonstrate giant and broadband all-optical ultrafast modulation of second-harmonic generation (SHG) in monolayer transition-metal dichalcogenides mediated by the modified excitonic oscillation strength produced upon optical pumping. We reveal a dominant role of dark excitons to enhance SHG by up to a factor of ∼386 at room temperature, 2 orders of magnitude larger than the current state-of-the-art all-optical modulation results. The amplitude and sign of the observed SHG modulation can be adjusted over a broad spectral range spanning a few electronvolts with ultrafast response down to the sub-picosecond scale via different carrier dynamics. Our results not only introduce an efficient method to study intriguing exciton dynamics, but also reveal a new mechanism involving dark excitons to regulate all-optical nonlinear photonics.

7.
ACS Nano ; 15(8): 13415-13426, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34310130

RESUMO

Nonlinear light-matter interactions in structured materials are the source of exciting properties and enable vanguard applications in photonics. However, the magnitude of nonlinear effects is generally small, thus requiring high optical intensities for their manifestation at the nanoscale. Here, we reveal a large nonlinear response of monolayer hexagonal boron nitride (hBN) in the mid-infrared phonon-polariton region, triggered by the strongly anharmonic potential associated with atomic vibrations in this material. We present robust first-principles theory predicting a threshold light field ∼24 MV/m to produce order-unity effects in Kerr nonlinearities and harmonic generation, which are made possible by a combination of the long lifetimes exhibited by optical phonons and the strongly asymmetric landscape of the configuration energy in hBN. We further foresee polariton blockade at the few-quanta level in nanometer-sized structures. In addition, by mixing static and optical fields, the strong nonlinear response of monolayer hBN gives rise to substantial frequency shifts of optical phonon modes, exceeding their spectral width for in-plane DC fields that are attainable using lateral gating technology. We therefore predict a practical scheme for electrical tunability of the vibrational modes with potential interest in mid-infrared optoelectronics. The strong nonlinear response, low damping, and robustness of hBN polaritons set the stage for the development of applications in light modulation, sensing, and metrology, while triggering the search for an intense vibrational nonlinear response in other ionic materials.

8.
ACS Nano ; 15(6): 9890-9899, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34006088

RESUMO

Transmission electron microscopy and spectroscopy currently enable the acquisition of spatially resolved spectral information from a specimen by focusing electron beams down to a sub-angstrom spot and then analyzing the energy of the inelastically scattered electrons with few-meV energy resolution. This technique has recently been used to experimentally resolve vibrational modes in 2D materials emerging at mid-infrared frequencies. Here, on the basis of first-principles theory, we demonstrate the possibility of identifying single isotope atom impurities in a nanostructure through the trace that they leave in the spectral and spatial characteristics of the vibrational modes. Specifically, we examine a hexagonal boron nitride molecule as an example of application, in which the presence of a single isotope impurity is revealed through changes in the electron spectra, as well as in the space-, energy-, and momentum-resolved inelastic electron signal. We compare these results with conventional far-field spectroscopy, showing that electron beams offer superior spatial resolution combined with the ability to probe the complete set of vibrational modes, including those that are optically dark. Our study is relevant for the atomic-scale characterization of vibrational modes in materials of interest, including a detailed mapping of isotope distributions.

9.
Nanophotonics ; 10(16): 4149-4159, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425323

RESUMO

Nanoscale nonlinear optics is limited by the inherently weak nonlinear response of conventional materials and the small light-matter interaction volumes available in nanostructures. Plasmonic excitations can alleviate these limitations through subwavelength light focusing, boosting optical near fields that drive the nonlinear response, but also suffering from large inelastic losses that are further aggravated by fabrication imperfections. Here, we theoretically explore the enhanced nonlinear response arising from extremely confined plasmon polaritons in few-atom-thick crystalline noble metal films. Our results are based on quantum-mechanical simulations of the nonlinear optical response in atomically thin metal films that incorporate crucial electronic band structure features associated with vertical quantum confinement, electron spill-out, and surface states. We predict an overall enhancement in plasmon-mediated nonlinear optical phenomena with decreasing film thickness, underscoring the importance of surface and electronic structure in the response of ultrathin metal films.

10.
Beilstein J Nanotechnol ; 8: 1742-1748, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904835

RESUMO

Using first-principles density functional theory calculations, we investigate adsorption properties and the diffusion mechanism of a Li atom on hydrogenated single-layer α- and ß-silicene on a Ag(111) surface. It is found that a Li atom binds strongly on the surfaces of both α- and ß-silicene, and it forms an ionic bond through the transfer of charge from the adsorbed atom to the surface. The binding energies of a Li atom on these surfaces are very similar. However, the diffusion barrier of a Li atom on H-α-Si is much higher than that on H-ß-Si. The energy surface calculations show that a Li atom does not prefer to bind in the vicinity of the hydrogenated upper-Si atoms. Strong interaction between Li atoms and hydrogenated silicene phases and low diffusion barriers show that α- and ß-silicene are promising platforms for Li-storage applications.

11.
Beilstein J Nanotechnol ; 8: 1808-1814, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904842

RESUMO

By performing density functional theory (DFT)-based calculations, the performance of α-silicene as oxidation-resistant coating on Ag(111) surface is investigated. First of all, it is shown that the Ag(111) surface is quite reactive against O atoms and O2 molecules. It is known that when single-layer silicene is formed on the Ag(111) surface, the 3 × 3-reconstructed phase, α-silicene, is the ground state. Our investigation reveals that as a coating layer, α-silicene (i) strongly absorbs single O atoms and (ii) absorbs O2 molecules by breaking the strong O-O bond. (iii) Even the hollow sites, which are found to be most favorable penetration path for oxygens, serves as high-energy oxidation barrier, and (iv) α-silicene becomes more protective and less permeable in the presence of absorbed O atom. It appears that single-layer silicene is a quite promising material for ultra-thin oxidation-protective coating applications.

12.
Chemphyschem ; 17(23): 3985-3991, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27685708

RESUMO

By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-voltage characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 041101, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599109

RESUMO

The relaxation dynamics of a Blume-Capel model with a quenched diluted crystal field is formulated by a method combining the statistical equilibrium theory and the thermodynamics of linear irreversible processes. Using a mean-field approximation for the magnetic Gibbs free-energy production, a generalized force and a current are defined within the irreversible thermodynamics. Next the kinetic equation for the magnetization is obtained within linear response theory. Finally, the temperature dependence of the relaxation time in the neighborhood of the phase-transition points is obtained by solving the kinetic equation of the magnetization. We find that the relaxation time of the order parameter diverges near the critical and multicritical points, which corresponds to the familiar critical slowing down. On the other hand, it displays different behavior at the first-order phase transitions. It has a jump discontinuity at the first-order phase-transition temperatures. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for a diverse class of systems, and good agreement is found with our results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA