Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 70(3): 1017-1031, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30590791

RESUMO

Deciduous trees require sufficient chilling during winter dormancy to grow. To decipher the dormancy-regulating mechanism, we carried out RNA sequencing (RNA-Seq) analysis and metabolic profiling of European pear (Pyrus communis L.) vegetative buds during the dormancy phases. Samples were collected from two cultivars that differed greatly in their chilling requirements: 'Spadona' (SPD), a low chilling requirement cultivar; and Harrow Sweet (HS), a high chilling requirement cultivar. Comparative transcriptome analysis revealed >8500 differentially expressed transcripts; most were related to metabolic pathways. Out of 174 metabolites, 44 displayed differential levels in both cultivars, 38 were significantly changed only in SPD, and 15 only in HS. Phospholipids were mostly accumulated at the beginning of dormancy, sugars between before dormancy and mid-dormancy, and fatty acids, including α-linolenic acid, at dormancy break. Differentially expressed genes underlying previously identified major quantitative trait loci (QTLs) in linkage group 8 included genes related to the α-linolenic acid pathway, 12-oxophytodienoate reductase 2-like, and the DORMANCY-ASSOCIATED MADS-BOX (DAM) genes, PcDAM1 and PcDAM2, putative orthologs of PpDAM1 and PpDAM2, confirming their role for the first time in European pear. Additional new putative dormancy-related uncharacterized genes and genes related to metabolic pathways are suggested. These results suggest the crucial role of α-linolenic acid and DAM genes in pear bud dormancy phase transitions.


Assuntos
Metaboloma , Dormência de Plantas/genética , Pyrus/fisiologia , Transcriptoma , Ácido alfa-Linolênico/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Brotos de Planta/genética , Brotos de Planta/metabolismo , Pyrus/genética
2.
BMC Plant Biol ; 18(1): 175, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30165824

RESUMO

BACKGROUND: Genomic analysis technologies can promote efficient fruit tree breeding. Genotyping by sequencing (GBS) enables generating efficient data for high-quality genetic map construction and QTL analysis in a relatively accessible way. Furthermore, High-resolution genetic map construction and accurate QTL detection can significantly narrow down the putative candidate genes associated with important plant traits. RESULTS: We genotyped 162 offspring in the F1 'Spadona' x 'Harrow Sweet' pear population using GBS. An additional 21 pear accessions, including the F1 population's parents, from our germplasm collection were subjected to GBS to examine diverse genetic backgrounds that are associated to agriculturally relevant traits and to enhance the power of SNP calling. A standard SNP calling pipeline identified 206,971 SNPs with Asian pear ('Suli') as the reference genome and 148,622 SNPs with the European genome ('Bartlett'). These results enabled constructing a genetic map, after further stringent SNP filtering, consisting of 2036 markers on 17 linkage groups with a length of 1433 cM and an average marker interval of 0.7 cM. We aligned 1030 scaffolds covering a total size of 165.5 Mbp (29%) of the European pear genome to the 17 linkage groups. For high-resolution QTL analysis covering the whole genome, we used phenotyping for vegetative budbreak time in the F1 population. New QTLs associated to vegetative budbreak time were detected on linkage groups 5, 13 and 15. A major QTL on linkage group 8 and an additional QTL on linkage group 9 were confirmed. Due to the significant genotype-by-environment (GxE) effect, we were able to identify novel interaction QTLs on linkage groups 5, 8, 9 and 17. Phenotype-genotype association analysis in the pear accessions for main genotype effect was conducted to support the QTLs detected in the F1 population. Significant markers were detected on every linkage group to which main genotype effect QTLs were mapped. CONCLUSIONS: This is the first vegetative budbreak study of European pear that makes use of high-resolution genetic mapping. These results provide tools for marker-assisted selection and accurate QTL analysis in pear, and specifically at vegetative budbreak, considering the significant GxE and phenotype-plasticity effects.


Assuntos
Cromossomos de Plantas/genética , Ligação Genética , Pyrus/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Fenótipo , Polimorfismo de Nucleotídeo Único , Pyrus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA