RESUMO
Feathers, an industrial by-product, are a valuable source of keratin that could be used, for example, in the preparation of films for biomedical and packaging applications. However, the utilisation of feather keratin requires scalable processes to convert feathers into a feasible keratin stream. This paper shows how deep eutectic solvent (DES) fractionated feathers could be converted into strong films. In the DES fractionation process, two keratin fractions with different molecular weights were obtained. The films made of the high molecular weight keratin fraction had better mechanical properties and stability against moisture than the films made of the low molecular weight keratin fraction. The strength properties were further improved by cross-linking the keratin with diglycidyl ether enabling the formation of a uniform keratin network, whereas glutaraldehyde did not show a clear cross-linking effect. These keratin films could be used, for example, in food packaging or medical applications such as wound care.
RESUMO
Technical lignins are widely available as side streams from pulping and biorefining processes. The aromatic structure of such lignins could be exploited in coating formulations to provide antioxidant or UV-blocking functionalities to packaging films. In this study, six technical lignins sourced from different plant species by given isolation/modification methods were compared for their composition, molar mass, and functional groups. The lignins were then used to prepare thin spin-coated films from aqueous ammonia media. All the lignins formed ultrathin (<12 nm), smooth (roughness < 2 nm), and continuous films that fully covered the solid support. Most of the films contained nanometer-sized particles, while those from water-insoluble lignins also presented larger particulate features, which likely originated from macromolecular association during solvent evaporation. These latter films had water contact angles (WCAs) between 40 and 60°, corresponding to a surface energy of 42-48 mJ/m2 (determined by Zisman plots). For comparison, the water wettability measured on lignin pellets obtained by mechanical compression tracked closely with the WCA obtained from the respective thin films. Considering the widely diverse chemical, molecular, and structural properties of the tested lignins, comprehensively documented here by using a battery of techniques, the solubility in water was found to be the most important and generic parameter to characterize the thin films. This points to the possibility of developing lignin coatings with predictable wetting behavior.
RESUMO
Poultry feathers, a source of keratin, are a significant side stream from the food industry, for which valorization is essential considering the circular economy aspects. For this, ecofriendly processes are the tools that allow the easy and feasible transformation of the feathers. Deep eutectic solvents (DESs) are generally considered as inexpensive, relatively simple, mild and environmentally friendly solvents which can dissolve proteins from protein-rich biomasses. In this work, feathers were processed with an aqueous DES to produce a uniform keratin feedstock. The proposed DES is composed of non-toxic sodium acetate and urea, with a small amount of water. After the DES treatment, water was used to dilute the DES components and regenerate the dissolved keratin. The processing conditions were optimized in terms of keratin yield and properties by varying the dissolution time from 2 h to 24 h and temperature from 80 °C to 100 °C. The yield of regenerated keratin was followed at different sodium acetate-urea molar ratios, and compared to the treatment performed with choline chloride-urea or 8 M urea as reference solvents. Sodium acetate-urea in the molar ratio of 1 : 2 at 100 °C and with 6 h dissolution time dissolved 86% of the feathers with a regenerated keratin yield of 45%. In the characterization of regenerated keratin, it was found that when the dissolution temperature was higher and the dissolution time longer, the disulfide and total sulfur content of feather keratin decreased, the range of molecular weights became wider, and some of the ordered secondary structure and crystallinity were lost.
RESUMO
Lignin is a complex natural polymer and it is one of the main constituent of the lignocellulosic biomass. Moreover, it is a bio-renewable material and it is available in large amounts as by-product from the forest industry. Lignin-based hydrogels with high swelling capabilities were prepared by crosslinking poly (methyl vinyl ether co-maleic acid) and different technical lignins in ammonium and sodium hydroxide solutions. The produced hydrogels showed a wide range of water absorption capacities varying from 13 to 130â¯g of water per 1â¯g of sample. It was observed that the higher the water uptake the poorer mechanical performance, as evaluated in terms of storage and loss modulus (G' and Gâ³, respectively) of the materials. Methylene blue (MB) was used as a model dye to evaluate the adsorption and release capabilities of the lignin hydrogels. Results suggested that these hydrogels showed a high MB removal efficiency, which ranged from 12 to 96%. On the contrary, the percentages of MB released depended on the negative surface charge of the hydrogels, showing values which ranged from 0.06 to 0.35%. Thus, these materials have potential to be used as adsorbents for the removal of organic dyes from waste water.
Assuntos
Corantes/química , Corantes/isolamento & purificação , Hidrogéis/química , Lignina/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Fenômenos Mecânicos , Azul de Metileno/química , Azul de Metileno/isolamento & purificaçãoRESUMO
Technical lignins are structurally heterogeneous and polydisperse. This work describes the use of a simple and green method for lignin fractionation, using different proportions of acetone (40 and 60%) in water. Lignins from three different sources (wheat straw organosolv lignin, wheat straw soda lignin and softwood kraft lignin) were used in this fractionation protocol. The obtained fractions showed different molar mass and functional groups. The lower molar mass fractions showed more phenolic hydroxyl groups and carboxylic acid moieties than higher molar mass fractions, which also possessed much higher amounts of carbohydrates. The chemical characterization of these fractionated lignins showed that the PREC fraction was exceptionally pure and homogeneous lignin. Its total lignin content was >96% for all three lignins and it was practically free from carbohydrates and inorganics (ash). Furthermore, PREC fraction possessed the highest carbon content for the three lignin samples (63.05-69.26%). These results illustrate that the proposed aqueous acetone fractionation protocol could indeed produce pure and uniform lignin fraction and it was applicable for lignins from different sources.
Assuntos
Fracionamento Químico/métodos , Lignina/química , Acetona/química , Lignina/isolamento & purificação , Peso Molecular , Solventes/química , Triticum/química , Água/químicaRESUMO
The interactive behavior of ink constituents with porous substrates during and after the offset print process has an important effect on the quality of printed products. To help elucidate the distribution of ink components between the retained ink layer and the substrate, a variety of spectroscopic and microscopic analysis techniques have been developed. This paper describes for the first time the use of total internal reflection (TIR) Raman spectroscopy to analyze the penetration behavior of separated offset ink components (linseed oil, solid color pigment) in coated papers providing chemically intrinsic information rapidly, nondestructively, and with minimal sample preparation. In addition, the already widely applied technique of attenuated total reflection infrared spectroscopy (ATR-IR) was evaluated in parallel and compared. The results of the ATR-IR Raman clearly revealed an improvement in uppermost depth resolution compared with values previously published from other nondestructive techniques, and the method is shown to be capable of providing new knowledge of the setting of thin (0.25-2 µm) offset ink films, allowing the spreading and the penetration behavior on physically different paper coating surfaces to be studied.
RESUMO
The effect of hydrothermal pretreatment on chemical composition, microscopic structure and enzymatic digestibility of wheat straw was studied. Wheat straw was pretreated with increasing severity to obtain series of samples with altered chemistry and structure. The hydrothermal pretreatment caused solubilisation of arabinoxylan and phenolic acids and their dimers in a temperature dependent manner with minor effects on the cellulose and Klason lignin content. In the cell wall level, the pretreatment intensified staining of cellulose and relocalised xylan in the cell walls. The distribution, properties and content of the cell wall phenolic compounds was altered as observed with phloroglucinol and autofluorescence imaging. In the enzymatic hydrolysis, the highest yields were obtained from the samples with a low xylan and diferulate content. On the cell wall structural level, the sample with the highest digestibility was observed to have intensified cellulose staining, possibly reflecting the increased accessibility of cellulose.
Assuntos
Biopolímeros/química , Biotecnologia/métodos , Parede Celular/química , Celulase/metabolismo , Temperatura , Água/farmacologia , Carboidratos/análise , Parede Celular/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Hidroxibenzoatos/análise , Lignina/metabolismo , Triticum/química , ResíduosRESUMO
A sequence of treatments consisting of an initial xylanase treatment followed by cold alkaline extraction and a final endoglucanase treatment was investigated as a process for upgrading non-wood paper-grade pulps to dissolving-grade pulps for viscose production. Five commercial dried bleached non-wood soda/AQ paper pulps, from flax, hemp, sisal, abaca, and jute, were studied for this purpose. Commercial dried bleached eucalyptus dissolving pulp was used as reference sample. Sisal pulp showed the highest improvement in Fock's reactivity, reaching levels nearly as high or even higher than that of eucalyptus dissolving pulp (65%), and a low hemicellulose content (3-4%) when was subjected to this sequence of treatments. The viscosity, however, decreased considerably. A uniform and narrow molecular weight distribution was observed by size exclusion chromatography. (13)C nuclear magnetic resonance spectroscopy and Raman microspectroscopy revealed that the cellulose structure consisted of cellulose I.
Assuntos
Agave/química , Biotecnologia/métodos , Celulase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Papel , Hidróxido de Sódio/farmacologia , Carboidratos/análise , Glucanos/química , Espectroscopia de Ressonância Magnética , Peso Molecular , Solubilidade , Análise Espectral Raman , Fatores de Tempo , Viscosidade , MadeiraRESUMO
A facile synthetic scheme for the preparation of methyl 4-deoxy-beta-L-threo-hex-4-enopyranosiduronic acid utilizing the commercially available methyl alpha-D-galactopyranoside as starting material has been developed. The synthesis sequence comprises six high yielding reaction steps: TEMPO oxidation, acetylation, methanolysis of the lactone, acetylation, beta-elimination, and final removal of the protecting groups. Only one column chromatographic purification is needed throughout the whole sequence. The overall yield is 60%. The final product has been characterized by NMR, Raman, UVRR, FTIR, and HRMS.
Assuntos
Ácidos Hexurônicos/química , Ácidos Hexurônicos/síntese química , Ácidos Urônicos/química , Ácidos Urônicos/síntese química , Configuração de Carboidratos , Cromatografia , Galactose/análogos & derivados , Galactose/química , Espectroscopia de Ressonância Magnética , Análise Espectral RamanRESUMO
The formation of four Cu(II)-xylitol complexes was observed in aqueous alkaline solutions (11.0< or =pH< or =14.0, I=1.0, 20 degrees C) by means of direct current polarography and VIS spectrophotometry. Mononuclear hydroxy complexes, CuXyl(OH)- (log beta=17.7 +/- 0.5), CuXyl(OH)2(2-) (log beta=20.2 +/- 0.3) and CuXyl2(OH)2(4-) (log beta=22.4 +/- 0.3), are formed at high ligand-to-metal ratios (L:M> or =10), whereas dinuclear complex Cu2Xyl (log beta=29.2 +/- 0.3) is the predominant species at low ligand-to-metal ratio (L:M=0.5). Diffusion coefficients and molar absorptivities of the complex species were determined. pH variable 13C NMR suggested that pKa values of xylitol are rather similar and equal to 13.8 +/- 0.2, 13.9 +/- 0.1 and 13.9 +/- 0.2 for OH-groups adjacent to (C-1,C-5), (C-3) and (C-2,C-4) carbon atoms, respectively.
Assuntos
Álcalis/química , Cobre/química , Xilitol/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Prótons , Soluções/química , EspectrofotometriaRESUMO
Raman spectroscopy of wood and lignin samples is preferably carried out in the near-infrared region because lignin produces an intense laser-induced fluorescence background at visible excitation wavelengths. However, excitation of aromatic and conjugated lignin structures with deep ultra violet (UV) light gives resonance-enhanced Raman signals while the overlapping fluorescence is eliminated. In this study, ultra violet resonance Raman (UVRR) spectroscopy was used to define characteristic vibration bands of model compounds of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures at three excitation wavelengths (229, 244, and 257 nm). The intensities of each band, relative to the intensity of the aromatic vibration band at 1600 cm-1, were defined and the most suitable excitation wavelength was suggested for each structure. p-Hydroxyphenyl structures showed intensive characteristic bands at 1217-1214 and 1179-1167 cm-1 with excitation at 244 nm, whereas the bands of guaiacyl structures were more intensive with 257 nm excitation. Most intensive characteristic bands of guaiacyl structures were found at 1289-1279, 1187-1185, 1158-1155, and 791-704 cm-1. Syringyl structures had almost identical spectra with 244 and 257 nm excitations with characteristic bands at 1514-1506, 1333-1330, and 981-962 cm-1. The characteristic bands of the three structural units were also found from the compression wood, softwood, and hardwood samples, indicating that UVRR spectroscopy can be applied for the determination of chemical structures of lignin.