Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Oral Investig ; 27(8): 4289-4300, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243819

RESUMO

OBJECTIVES: Previous studies have shown that aligners have limited ability to control root movements. The purpose of this study was to investigate which modification geometry and foil thickness are optimal for generating the force-moment (F/M) systems required for palatal root torque of maxillary central incisors. MATERIALS AND METHODS: Tooth 11 was separated from a maxillary acrylic model and connected to a movement unit via a 3D F/M sensor. Different modification geometries (crescent, capsular, double-spherical) with different depths were digitally implemented in the labio-cervical region of tooth 11 to induce an increased contact force. We evaluated the F/M systems exerted by aligners with thicknesses of 0.4-1.0 mm. F/M measurements were taken with tooth 11 in the neutral position and during palatal displacement of tooth 11 (simulating its initial clinical movement). RESULTS: The mechanical requirements of palatal root torque are a palatally directed force (- Fy) and a palatal root torquing moment (- Mx). These requirements were reliably achieved with modification depths > 0.5 mm. The modification depth and foil thickness had a significant influence on - Fy magnitudes (linear mixed-effect models, p < 0.01). With the 0.75-mm aligners combined with 1.5-mm deep modifications, the palatal root torque range (palTR) started after an initial palatal crown displacement of 0.09, 0.12, and 0.12 mm for the capsular, crescent, and double-spherical modification geometries, respectively. CONCLUSIONS: A relatively early start of the palatal torque range (after a 0.1-mm palatal crown displacement) and appropriate - Fy magnitudes were achieved with 0.75-mm-thick aligners containing 1.5-mm deep capsular or crescent pressure regions. Subsequent clinical trials are required to confirm the clinical effects of these modifications. CLINICAL RELEVANCE: In vitro testing indicated that modified aligners are capable of generating the F/M components required for palatal root torque of upper central incisors.


Assuntos
Incisivo , Técnicas de Movimentação Dentária , Torque , Desenho de Aparelho Ortodôntico , Maxila
2.
Am J Orthod Dentofacial Orthop ; 164(1): 106-115, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36934058

RESUMO

INTRODUCTION: Burstone's segmented intrusion arch technique allows variable incisor intrusion with lingual or labial tipping, depending on the position and direction of the force vectors exerted by the intrusion springs. To date, systematic biomechanical studies are lacking. This in vitro study aimed to determine the 3-dimensional force-moment systems applied to the 4 mandibular incisors and the deactivation behavior of the appliance by different configurations of the 3-piece intrusion mechanics. METHODS: The experimental setup consisted of a mandibular model segmented into 2 buccal and 1 anterior segment mounted on a 6-axis Hexapod to simulate different incisor segment malpositions. Active elements were bilateral 0.017 × 0.025-in titanium-molybdenum alloy intrusion springs. Nine geometric appliance configurations at different superpositions of the anterior segment between 4 and 0 mm were evaluated. RESULTS: For 3-mm incisor superposition, mesiodistal variation of the contact of the intrusion spring at the anterior segment wire resulted in labial tipping moments between -0.11 and -1.6 Nmm. Variation of the height of force application at the anterior segment showed no significant influence on the tipping moments. During the simulated intrusion of the anterior segment, a force reduction rate of 21% per mm intrusion was observed. CONCLUSIONS: This study contributes to a more detailed and systematic understanding of the 3-piece intrusion mechanics and confirms the simplicity and predictability of the 3-piece intrusion. According to the measured reduction rate, the intrusion springs should be activated once every 2 months or 1-mm intrusion.


Assuntos
Fios Ortodônticos , Técnicas de Movimentação Dentária , Humanos , Técnicas de Movimentação Dentária/métodos , Incisivo , Mandíbula
3.
J Orofac Orthop ; 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369385

RESUMO

PURPOSE: To better understand the side effects of fixed lingual retainers by means of an in vitro study in a two-tooth model determining the three-dimensional (3D) force-moment components acting at adjacent teeth combined with different composite-wire interfaces. METHODS: Triple-stranded round retainer wires were embedded in cured disks of flowable composite. At one side the composite-wire interface was untreated and checked to be absolutely fix. At the other side the composite-wire interface was configured as either an isolated compound with (1) petroleum jelly coating, or an adhered compound with (2) no manipulation, (3) ethanol degreasing or (4) ethanol degreasing and rectangular bending of the wire ends. The 3D force-moment components were registered, while the intertooth distance was increased in steps of 0.01 mm leading to increasing tension of the wire. Measurements were repeated after artificially aging the specimens. RESULTS: Retainer wire specimens with adhered compound (2, 3, 4) showed negative vestibulo-oral moments ranging maximally each between -0.3 and -0.9 Nmm in opposite direction to positive moments of 1.9 Nmm for specimens with isolated compound 1. Significant tipping moments occurred in the group with isolated compound at lower forces than in those groups with adhered compound. Similar effects were observed after artificial aging. CONCLUSION: Side effects emerge under specific circumstances: an altered adhesive compound combined with the presence of oral forces. Compounds with lost adhesion at the composite-wire interface showed rotational moments in the direction of the wire windings even during low tensile forces similar to those that may occur in clinical settings. Opposite rotational moments leading to unwinding of the wire may occur in cases with adhered compounds at higher tensile forces. Utilization of round triple-stranded retainer wires without bent ends are of higher risk to induce inadvertent side effects.

4.
J Oral Rehabil ; 48(4): 392-402, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368502

RESUMO

BACKGROUND: Closing movements are among the jaw's basic physiological motor actions. During functional movements, the jaw changes position continually, which requires appropriate proprioception. However, the significance of the various proprioceptive receptors involved and how they interact is not yet fully clear. OBJECTIVES: This study's main objective was to test whether preventing intercuspation (IC) for 1 week would affect the precision of jaw-closing movements into IC and the functional space of habitual chewing movements (HCM). A secondary objective was to compare precision of jaw-closing movements into IC with the precision of movements into a target position (TP) far from IC. METHODS: Fourteen participants' HCM and jaw-closing movements into IC were recorded on two sessions (T1 and T2) 1 week apart. Between sessions, participants wore posterior bite plates to prevent IC. They also received a 10-minute training session at T1 to guide their jaw-closing movements into TP. The precision of the closing movements into IC and TP was analysed. For HCM, the vertical amplitude, lateral width and area of chewing cycles were evaluated. RESULTS: The precision of jaw movements into IC increased as the jaw gap decreased, but precision did not differ significantly between T1 and T2. For HCM, the vertical amplitude and area of chewing cycles increased significantly between T1 and T2. The precision of the closing trajectory into TP increased significantly during the training session. CONCLUSION: Our results confirm the excellent adaptability of the craniomandibular system, controlled by stringent motor programmes that are supported by continuous peripheral sensory input.


Assuntos
Mastigação , Movimento , Humanos , Arcada Osseodentária , Periodicidade
5.
J Orofac Orthop ; 80(5): 223-235, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31410493

RESUMO

OBJECTIVE: In vitro testing of archwires in a multibracket model may provide estimates of force-moment (F/M) systems applied to individual teeth in a realistic geometry. Such investigations have mostly been performed by continuous wire deflection, leading to frictional forces biasing the pure deflection forces. Aim of this study was to quantify this bias and the pure deflection forces for leveling archwires. MATERIALS AND METHODS: Three nickel-titanium (NiTi) and two multistranded wires were tested in a three-bracket model simulating vertical movement of an upper incisor with a typical interbracket distance of 8 mm (intercenter). To determine pure deflection forces, the middle bracket was first leveled incrementally from its vertical malposition to neutral position with repeated wire insertion at each step (so-called "static leveling mode"). For comparison, forces at the middle bracket were also determined during dynamic leveling with or without ligation of the wire at the lateral brackets by either elastic, tight or loose steel ligatures. RESULTS: The dynamic mode resulted in significantly lower mean leveling forces for all the tested wires (ANOVA [analysis of variance], p < 0.01) compared to the static mode. Expressed in numbers, dynamic wire unloading resulted in mean force underestimation of 53 ± 9% (loose steel ligatures), 56 ± 11% (elastic ligatures) or 91 ± 29% (tight steel ligatures). CONCLUSIONS: Orthodontic tooth movement is quasi-static. This concerns the initial hyalinization phase in particular. Thus, especially static testing of archwires provides valid reference data for the peak forces exerted directly after clinical insertion of a leveling wire. In dynamic wire testing, significant underestimation of actual forces exerted on individual teeth may occur due to experimental friction, which might considerably differ from that occurring during clinical therapy. This aspect has to be taken into account in the interpretation of published stiffness values for orthodontic wires, and in the selection of the appropriate archwire for leveling of the present tooth malposition, respectively.


Assuntos
Braquetes Ortodônticos , Análise do Estresse Dentário , Fricção , Teste de Materiais , Desenho de Aparelho Ortodôntico , Fios Ortodônticos , Titânio , Técnicas de Movimentação Dentária
6.
PLoS One ; 12(4): e0176735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453556

RESUMO

Rat models are widely used in preclinical studies investigating fracture healing. The interfragmentary movement at a fracture site is critical to the course of healing and therefore demands definition in order to aptly interpret the experimental results. Estimation of this movement requires knowledge of the fixation stiffness and loading. The characteristic loading for the rat femur has been estimated, but the stiffness of fixation used in rat studies has yet to be fully described. This study aimed to determine the 6 degree of freedom stiffness of four commonly used implants, two external fixators (RatExFix and UlmExFix), a locking plate, and a locking intramedullary nail, in all degrees of freedom and estimate the interfragmentary movement under specific physiological loads. The external fixator systems allow the greatest movement. Mounted 45° anterolateral on the femur, the RatExFix allows an average of 0.88 mm of motion in each anatomic direction while the stiffer UlmExFix allows about 0.6 mm of motion. The nail is far stiffer than the other implants investigated while the plate allows movement of an intermediate magnitude. Both the nail and plate demonstrate higher axial than shear stiffness. The relatively large standard deviations in external fixator shear motion imply strong dependence on bone axis alignment across the gap and the precise orientation of the specimen relative to the loading. The smaller standard deviation associated with the nail and plate results from improved alignment and minimization of the influence of rotational positioning of the specimen due to the reduced implant eccentricity relative to the specimen axis. These results show that the interfragmentary movement is complex and varies significantly between fixation devices but establishes a baseline for the evaluation of the results of different studies.


Assuntos
Pinos Ortopédicos , Placas Ósseas , Fixadores Externos , Fraturas do Fêmur/fisiopatologia , Consolidação da Fratura/fisiologia , Movimento (Física) , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Elasticidade , Desenho de Equipamento , Fraturas do Fêmur/cirurgia , Fixação de Fratura , Teste de Materiais
7.
Am J Orthod Dentofacial Orthop ; 151(2): 407-415, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28153171

RESUMO

INTRODUCTION: Recent studies have shown that therapeutic loads applied to individual teeth by aligners may substantially exceed recommended values. The primary purpose of this study was to quantify force and moment components during derotation of a maxillary central incisor when 0.3-mm-thick or 0.4-mm-thick polyethylene terephthalate glycol aligners were used instead of conventional polyethylene terephthalate glycol aligners with a minimum thickness of 0.5 mm. METHODS: The test setup consisted of an acrylic model of a maxilla with a separated right central incisor mounted on a 3-dimensional force and moment sensor. The force and moment components were recorded for aligners with thicknesses ranging from 0.3 to 0.75 mm during ±10° rotation and derotation of the separated incisor. RESULTS: Moments exerted by the thinnest aligner currently available, 0.5 mm, were 73.57 Nmm for the 10° mesiorotation. In comparison, the corresponding moments with the 0.4-mm and 0.3-mm aligners were 41.08 and 17.84 Nmm, respectively. Moment values for derotation of the maxillary right central incisor into neutral position showed nonlinear return curves indicating viscoelastic material behavior. CONCLUSIONS: A significant load reduction can be achieved with the new thinner aligners. Because of the form instability of the 0.3-mm aligner during handling, we suggest the novel sequence 0.4, 0.5, and 0.75 mm for aligner systems based on sequentially increased material thickness. This sequence combines sufficiently low initial aligner stiffness and steady load increases in single setup steps. The viscoelastic behavior of polyethylene terephthalate glycol aligners observed during incisor derotation should lead to a reduction of the high initial load exerted directly after intraoral aligner insertion.


Assuntos
Incisivo , Aparelhos Ortodônticos , Fenômenos Físicos , Humanos , Técnicas In Vitro , Maxila , Desenho de Aparelho Ortodôntico , Rotação
8.
Angle Orthod ; 86(6): 883-890, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27224904

RESUMO

OBJECTIVE: To evaluate whether overloading of teeth can be avoided by utilizing aligners with reduced thicknesses of 0.4 mm or 0.3 mm. MATERIALS AND METHODS: The experimental setup included an acrylic maxillary jaw model with tooth 11 separated and fixed via a 3-D force-moment transducer to a hexapod for experimental movement. Aligners tested were fabricated on duplicate stone models using commercially available polyethylene terephthalate glycol (PET-G) foils with thicknesses between 0.5 and 0.75 mm, and novel 0.4-mm- and 0.3-mm-thick foils. With the test aligner seated, 11 was bodily displaced in a labiopalatal direction in the range of ±0.25 mm while all six force-and-moment components exerted on this tooth were registered. RESULTS: With the thinnest commercially available 0.5-mm aligner, median forces of -7.89 N and 8.37 N were measured for the maximum 0.25-mm movement of 11 in a labial and palatal direction, respectively. In comparison, force values were 35% and 71% lower for the novel aligners with a thickness of 0.4 mm and 0.3 mm, respectively. CONCLUSIONS: Novel "leveling" aligners with reduced thickness may reduce overloading of individual teeth during aligner therapy. Due to form instability of 0.3-mm aligners, we suggest a novel sequence of 0.4-0.5-0.75 mm for aligner systems using several foil thicknesses for load graduation within single setup steps. This would combine low stiffness of the initial aligner and relatively constant load increases throughout the treatment.


Assuntos
Desenho de Aparelho Ortodôntico , Técnicas de Movimentação Dentária , Dente Canino , Humanos , Incisivo , Maxila
9.
Comput Methods Biomech Biomed Engin ; 19(15): 1673-82, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27113861

RESUMO

In orthodontic treatment, the locations of the centre of resistance (CR) of individual teeth and the applied load system are the major determinants for the type of tooth movement achieved. Currently, CR locations have only been specified for a relatively small number of tooth specimen for research purposes. Analysing cone beam computed tomography data samples from three upper central incisors, this study explores whether the effort to establish accurate CR estimates can be reduced by (i) morphing a pre-existing simplified finite element (FE) mesh to fit to the segmented 3D tooth-bone model, and (ii) individualizing a mean CR location according to a small parameter set characterising the morphology of the tooth and its embedding. The FE morphing approach and the semi-analytical approach led to CR estimates that differ in average only 0.04 and 0.12 mm respectively from those determined by very time-consuming individual FE modelling (standard method). Both approaches may help to estimate the movement of individual teeth during orthodontic treatment and, thus, increase the therapeutic efficacy.


Assuntos
Análise do Estresse Dentário/métodos , Incisivo/fisiologia , Técnicas de Movimentação Dentária , Tomografia Computadorizada de Feixe Cônico , Análise de Elementos Finitos , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA