Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Ultramicroscopy ; 149: 86-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486377

RESUMO

Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution.


Assuntos
Colágeno Tipo I/metabolismo , Colágeno Tipo I/ultraestrutura , Cinética , Microscopia de Força Atômica/métodos , Imagem Molecular/métodos
2.
Appl Spectrosc ; 68(8): 916-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25061793

RESUMO

The combination of scanning probe microscopy and Raman spectroscopy enables chemical characterization of surfaces at highest spatial resolution. This so-called tip-enhanced Raman scattering (TERS) can be employed for a variety of samples where a label-free characterization or identification of constituents on the nanometer scale is pursued. Present TERS setup geometries are always a compromise for specific dedicated applications and show different advantages and disadvantages: Transmission back-reflection setups, when using immersion objectives with a high numerical aperture, intrinsically provide the highest collection efficiency but cannot be applied for opaque samples. Those samples demand upright setups, at the cost of lower collection efficiency, even though very efficient systems using a parabolic mirror for illumination and collection have been demonstrated. In this contribution it is demonstrated that the incorporation of a dichroic mirror to a transmission TERS setup provides easy access to opaque samples without further modification of the setup.

3.
Nanotechnology ; 19(38): 384020, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21832579

RESUMO

With the introduction of single-molecule force spectroscopy (SMFS) it has become possible to directly access the interactions of various molecular systems. A bottleneck in conventional SMFS is collecting the large amount of data required for statistically meaningful analysis. Currently, atomic force microscopy (AFM)-based SMFS requires the user to tediously 'fish' for single molecules. In addition, most experimental and environmental conditions must be manually adjusted. Here, we developed a fully automated single-molecule force spectroscope. The instrument is able to perform SMFS while monitoring and regulating experimental conditions such as buffer composition and temperature. Cantilever alignment and calibration can also be automatically performed during experiments. This, combined with in-line data analysis, enables the instrument, once set up, to perform complete SMFS experiments autonomously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA