Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Chem Biol ; 3(10): 1216-1229, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36320884

RESUMO

Covalently acting compounds experience a strong interest within chemical biology both as molecular probes in studies of fundamental biological mechanisms and/or as novel drug candidates. In this context, the identification of new classes of reactive groups is particularly important as these can expose novel reactivity modes and, consequently, expand the ligandable proteome. Here, we investigated the electrophilic reactivity of the 3-acyl-5-hydroxy-1,5-dihydro-2H-pyrrole-2-one (AHPO) scaffold, a heterocyclic motif that is e.g. present in various bioactive natural products. Our investigations were focused on the compound MT-21 - a simplified structural analogue of the natural product epolactaene - which is known to have both neurotrophic activity and ability to trigger apoptotic cell death. We found that the central N-acyl hemiaminal group of MT-21 can function as an electrophilic centre enabling divergent reactivity with both amine- and thiol-based nucleophiles, which furthermore translated to reactivity with proteins in both cell lysates and live cells. We found that in live cells MT-21 strongly engaged the lipid transport protein fatty acid-binding protein 5 (FABP5) by direct binding to a cysteine residue in the bottom of the ligand binding pocket. Through preparation of a series of MT-21 derivatives, we probed the specificity of this interaction which was found to be strongly dependent on subtle structural changes. Our study suggests that MT-21 may be employed as a tool compound in future studies of the biology of FABP5, which remains incompletely understood. Furthermore, our study has also made clear that other natural products containing the AHPO-motif may likewise possess covalent reactivity and that this property may underlie their biological activity.

2.
J Org Chem ; 83(13): 7303-7308, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29724097

RESUMO

The natural products pantomycin and stendomycin were both reported as antimicrobial agents. We demonstrate by gene cluster analysis, LC-MS analysis, and isolation that these polypeptides are identical, and we identify previously unknown congeners. We show that stendomycin can be chemically modified at its electrophilic dehydrobutyrine moiety yielding the first bioactive analogue of this natural product which can undergo additional functionalization. This compound may be a valuable starting point for molecular probe development, and we invite its distribution to the scientific community.


Assuntos
Produtos Biológicos/química , Peptídeos/química , Animais , Peptídeos Catiônicos Antimicrobianos , Candida/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida/métodos , Ratos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA