Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474416

RESUMO

Despite tremendous efforts in basic research and a growing number of clinical trials aiming to find effective treatments, amyotrophic lateral sclerosis (ALS) remains an incurable disease. One possible reason for the lack of effective causative treatment options is that ALS may not be a single disease entity but rather may represent a clinical syndrome, with diverse genetic and molecular causes, histopathological alterations, and subsequent clinical presentations contributing to its complexity and variability among individuals. Defining a way to subcluster ALS patients is becoming a central endeavor in the field. Identifying specific clusters and applying them in clinical trials could enable the development of more effective treatments. This review aims to summarize the available data on heterogeneity in ALS with regard to various aspects, e.g., clinical, genetic, and molecular.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/patologia , Resultado do Tratamento , Ensaios Clínicos como Assunto
3.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924575

RESUMO

Niemann-Pick type C2 (NP-C2) disease is a rare hereditary disease caused by mutations in the NPC2 gene. NPC2 is a small, soluble protein consisting of 151 amino acids, primarily expressed in late endosomes and lysosomes (LE/LY). Together with NPC1, a transmembrane protein found in these organelles, NPC2 accomplishes the exclusion of cholesterol; thus, both proteins are essential to maintain cellular cholesterol homeostasis. Consequently, mutations in the NPC2 or NPC1 gene result in pathophysiological accumulation of cholesterol and sphingolipids in LE/LY. The vast majority of Niemann-Pick type C disease patients, 95%, suffer from a mutation of NPC1, and only 5% display a mutation of NPC2. The biochemical phenotype of NP-C1 and NP-C2 appears to be indistinguishable, and both diseases share several commonalities in the clinical manifestation. Studies of the pathological mechanisms underlying NP-C2 are mostly based on NP-C2 animal models and NP-C2 patient-derived fibroblasts. Recently, we established induced pluripotent stem cells (iPSCs), derived from a donor carrying the NPC2 mutations c.58G>T/c.140G>T. Here, we present a profile of pathophysiological in vitro features, shared by NP-C1 and NP-C2, of neural differentiated cells obtained from the patient specific iPSCs. Profiling comprised a determination of the NPC2 protein level, detection of cholesterol accumulation by filipin staining, analysis of oxidative stress, and determination of autophagy. As expected, the NPC2-deficient cells displayed a significantly reduced amount of NPC2 protein, and, accordingly, we observed a significantly increased amount of cholesterol. Most notably, NPC2-deficient cells displayed only a slight increase of reactive oxygen species (ROS), suggesting that they do not suffer from oxidative stress and express catalase at a high level. As a site note, comparable NPC1-deficient cells suffer from a lack of catalase and display an increased level of ROS. In summary, this cell line provides a valuable tool to gain deeper understanding, not only of the pathogenic mechanism of NP-C2, but also of NP-C1.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Neurônios/patologia , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/fisiopatologia , Proteínas de Transporte Vesicular/genética , Antioxidantes/metabolismo , Autofagia , Colesterol/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Neuroglia/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081384

RESUMO

Oxidative stress (OS) represents a state of an imbalanced amount of reactive oxygen species (ROS) and/or a hampered efficacy of the antioxidative defense system. Cells of the central nervous system are particularly sensitive to OS, as they have a massive need of oxygen to maintain proper function. Consequently, OS represents a common pathophysiological hallmark of neurodegenerative diseases and is discussed to contribute to the neurodegeneration observed amongst others in Alzheimer's disease and Parkinson's disease. In this context, accumulating evidence suggests that OS is involved in the pathophysiology of Niemann-Pick type C1 disease (NPC1). NPC1, a rare hereditary neurodegenerative disease, belongs to the family of lysosomal storage disorders. A major hallmark of the disease is the accumulation of cholesterol and other glycosphingolipids in lysosomes. Several studies describe OS both in murine in vivo and in vitro NPC1 models. However, studies based on human cells are limited to NPC1 patient-derived fibroblasts. Thus, we analyzed OS in a human neuronal model based on NPC1 patient-specific induced pluripotent stem cells (iPSCs). Higher ROS levels, as determined by DCF (dichlorodihydrofluorescein) fluorescence, indicated oxidative stress in all NPC1-deficient cell lines. This finding was further supported by reduced superoxide dismutase (SOD) activity. The analysis of mRNA and protein levels of SOD1 and SOD2 did not reveal any difference between control cells and NPC1-deficient cells. Interestingly, we observed a striking decrease in catalase mRNA and protein levels in all NPC1-deficient cell lines. As catalase is a key enzyme of the cellular antioxidative defense system, we concluded that the lack of catalase contributes to the elevated ROS levels observed in NPC1-deficient cells. Thus, a restitution of a physiological catalase level may pose an intervention strategy to rescue NPC1-deficient cells from the repercussions of oxidative stress contributing to the neurodegeneration observed in NPC1.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Estresse Oxidativo , Catalase/genética , Catalase/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurônios/citologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA