Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(14): e202300420, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37462456

RESUMO

The front cover artwork is provided by Dr. Lehmkuhl's group at the Karlsruhe Institute of Technology. The image shows continuous NMR signals complemented by a simulated bifurcation diagram of a nonlinear RASER system. Read the full text of the Research Article at 10.1002/cphc.202300204.

2.
Chemphyschem ; 24(14): e202300204, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37183171

RESUMO

A RASER (Radio Amplification by Stimulated Emission of Radiation) facilitates the study of nonlinear phenomena, as well as the determination of NMR parameters with high precision. To achieve maximum sensitivity in the desired operating mode, it is crucial to control the RASER over long periods of time. So far, this was only possible at ultra-low magnetic fields. Here, we introduce a way to control the operating regime of a RASER at a magnetic field of 1.45 T. We employ a continuous-flow RASER, pumped by PHIP (ParaHydrogen Induced Polarization). The hydrogenation of vinyl acetate (VA) with parahydrogen provides the required negative polarization on the methyl group of the product ethyl acetate (EA). The protons within the methyl group, separated by a 7 Hz J-coupling, are RASER active. This system demonstrates five RASER phenomena: inequivalent and equivalent amplitudes in the "normal NMR mode", period doublings, frequency combs, and chaos. The experiments match with simulations based on a theoretical model of two nonlinear-coupled RASER modes. We predict the RASER regime at set conditions and visualize the prediction in a bifurcation diagram.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA