Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726989

RESUMO

The aim of the study was to assess the photocatalytic (decompose staining particles, K/S values, the color differences, CIE L*a*b* color) and antimicrobial properties of textiles modified with TiO2 and ZnO nanoparticles (NPs) confirmed by X-ray diffraction, dynamic light scattering, SEM-EDX) in visible light conditions. The antimicrobial effectiveness of modified textiles under model conditions has been reported against 5 microorganisms: Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Candida albicans, Aspergillus niger (AATCC Test Method 100-2004). In real conditions in bathrooms, significant biostatic activity was shown on the surface of the modified towels. The number of microorganisms decreased by 1-5 log to the level of 0-5 CFU/cm2 in the case of bacteria: Enterobacteriaceae, Enterococcus, the coli group and E. coli, Pseudomonas. Statistically significant reduction of the total number of bacteria and fungi (by 1 log), and the concentration of gases (NO2, CO2, CO) in the air of bathrooms was determined. The removal or reduction of volatile organic compounds (VOCs) concentration (SPME-GC-MS analysis) in the air above the modified towels has also been determined. It was found that the lighting type (natural, artificial), time (1.5 and 7 h/day), air humidity (RH = 36-67%) and light intensity (81-167 lux) are important for the efficiency of photocatalysis. Textile materials modified with TiO2 and ZnO NPs can be used as self-cleaning towels. They can also help purify air from microorganisms, VOCs and undesirable gases.

2.
Polymers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033396

RESUMO

In this work, beeswax was used for the first time for finishing polyester/Cotton/Viscose blend fabric and polyester fabric. The aims of the study were: (1) to characterize the composition of beeswax (using Gas Chromatography Mass Spectrometry, GC-MS and 109AgNPET laser desorption/ionization mass spectrometry (LDI MS); (2) to develop a laboratory method for applying beeswax; (3) to assess the antimicrobial activity of beeswax fabrics against bacteria and fungi (AATCC 100-2004 test); and (4) to assess the properties of textiles modified by beeswax. Beeswax was composed of fatty acids, monoacyl esters, glyceride esters and more complex lipids. The bioactivity of modified fabrics was from -0.09 to 1.55. The highest biocidal activity (>1) was obtained for both fabrics against A. niger mold. The beeswax modification process neither affected the morphological structure of the fibers (the wax evenly covered the surface of the fibers) nor their color. The only statistically significant changes observed were in the mechanical properties of the fabrics. The results obtained indicate that modification of fabrics with beeswax may endow them with biocidal properties against molds, which has practical applications, for example, for the prevention of skin mycoses in health and social care facilities.

3.
Molecules ; 24(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540285

RESUMO

Studies on the functionalization of materials used for the construction of filtering facepiece respirators (FFRs) relate to endowing fibers with biocidal properties. There is also a real need for reducing moisture content accumulating in such materials during FFR use, as it would lead to decreased microorganism survival. Thus, in our study, we propose the use of superabsorbent polymers (SAPs), together with a biocidal agent (biohalloysite), as additives in the manufacturing of polypropylene/polyester (PP/PET) multifunctional filtering material (MFM). The aim of this study was to evaluate the MFM for stability of the modifier's attachment to the polymer matrix, the degree of survival of microorganisms on the nonwoven, and its microorganism filtration efficiency. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to test the stability of the modifier's attachment. The filtration efficiency was determined under conditions of dynamic aerosol flow of S. aureus bacteria. The survival rates (N%) of the following microorganisms were assessed: Escherichia coli and Staphylococcus aureus bacteria, Candida albicans yeast, and Aspergillus niger mold using the AATCC 100-2004 method. FTIR spectrum analysis confirmed the pre-established composition of MFM. The loss of the active substance from MFM in simulated conditions of use did not exceed 0.02%, which validated the stability of the modifier's attachment to the PP/PET fiber structure. SEM image analysis verified the uniformity of the MFM structure. Lower microorganism survival rates were detected for S. aureus, C. albicans, and E. coli on the MFM nonwoven compared to control samples that did not contain the modifiers. However, the MFM did not inhibit A. niger growth. The MFM also showed high filtration efficiency (99.86%) against S. aureus bacteria.


Assuntos
Desinfetantes/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Polipropilenos/síntese química , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Desinfetantes/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Filtração/instrumentação , Microscopia Eletrônica de Varredura , Polímeros , Polipropilenos/química , Dispositivos de Proteção Respiratória/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
4.
Artigo em Inglês | MEDLINE | ID: mdl-31546968

RESUMO

The aim of the study was to analyze the microbiological biodiversity of human foot skin with respect to factors such as age, gender, frequency of foot washing and physical activity, and to select indicator species to be considered when designing textile materials with antimicrobial properties used for sock and insole production. The experiment was carried out on a group of 40 people. The number of microorganisms was determined using culture-dependent methods. Biodiversity was determined using culture followed by genetic identification based on 16S rRNA gene sequencing (bacteria), ITS region (fungi), or using Illumina next-generation sequencing (in a group of eight selected individuals). The total bacterial number on women's feet was on average 1.0 × 106 CFU/cm2, and was not statistically significantly different than that of men's feet (mean 1.2 × 105 CFU/cm2). The number of bacteria, in most cases, decreased with age and with increased frequency of physical activity. The number of bacteria increased with diminishing feet-washing frequency; however, statistically significant differences were found between groups. The number of fungi was not significantly different amongst groups. Bacteria belonging to the phyla Firmicutes, Proteobacteria and Actinobacteria constituted the main microorganisms of the foot skin. Ascomycota and Basidiomycota predominated amongst the fungi. The presence of specific species varied in groups depending on the factors mentioned above. Two of the species identified were classified as pathogens (Neisseria flavescens and Aspergillus fumigatus). These findings suggest that it is necessary to extend the list of microorganisms tested on textiles with respect to hygienic properties.


Assuntos
Bactérias/isolamento & purificação , Pé/microbiologia , Fungos/isolamento & purificação , Microbiota , Pele/microbiologia , Adolescente , Adulto , Bactérias/genética , Biodiversidade , Criança , Pré-Escolar , Técnicas de Cultura , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Adulto Jovem
5.
Artigo em Inglês | MEDLINE | ID: mdl-31394819

RESUMO

Bioaerosol is a threat at workplaces, therefore the selection and safe use of filtering facepiece respirators (FFRs) is important in preventive activities. The aim of the study was to assess the survival of microorganisms on materials used for FFRs construction. The parameters for microorganism growth under model conditions were described using the Gompertz equation, model verification was also carried out using FFRs at the farmers' workplaces. We found that the factors determining a high survival of microorganisms were as follows: moisture corresponding to the conditions of use and storage of FFRs at workplaces, the presence of sweat and organic dust; inorganic dust and addition of biocide in nonwovens limited the growth of microorganisms, resulting in a shortening of the stationary growth phase and decreased cell numbers (5-6 log). Dust concentration at workplaces was higher than EU occupational exposure limit values and WHO recommendations for airborne particulate matter. Microbial contaminations of the air (103-104 CFU/m3), settled dust (104-106 CFU/g) and FFRs (105 CFU/4cm2) during the grain harvest were high, the main contamination being bacteria (actinomycetes, Pseudomonas fluorescens) and xerophilic fungi. A high correlation was found between the number of microorganisms and the weight of dust on FFRs (R2 = 0.93-0.96).


Assuntos
Agricultura , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Exposição Ocupacional/análise , Dispositivos de Proteção Respiratória/microbiologia , Humanos , Local de Trabalho
6.
Artigo em Inglês | MEDLINE | ID: mdl-30935098

RESUMO

Filtering nonwovens that constitute the base material for filtering facepiece respirators (FFRs) used for the protection of the respiratory system against bioaerosols may, in favourable conditions, promote the development of harmful microorganisms. There are no studies looking at the impact that different types of filtering nonwovens have on microorganism survival, which is an important issue for FFR producers and users. Five commercial filtering nonwovens manufactured using diverse textile technologies (i.e., needle-punching, melt-blown, spun-bonding) with different structural parameters and raw material compositions were used within our research. The survival of microorganisms on filtering nonwovens was determined for E. coli, S. aureus, B. subtilis bacteria; C. albicans yeast and A. niger mould. Samples of nonwovens were collected immediately after inoculum application (at 0 h) and after 4, 8, 24, 48, 72, and 96 h of incubation. The tests were carried out in accordance with the AATCC 100-1998 method. Survival depended strongly on microorganism species. E. coli and S. aureus bacteria grew the most on all nonwovens tested. The structural parameters of the nonwovens tested (mass per unit area and thickness) and contact angle did not significantly affect microorganism survival.


Assuntos
Aspergillus niger/fisiologia , Bacillus subtilis/fisiologia , Candida albicans/fisiologia , Escherichia coli/fisiologia , Dispositivos de Proteção Respiratória/microbiologia , Staphylococcus aureus/fisiologia , Aspergillus niger/crescimento & desenvolvimento , Bacillus subtilis/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Filtração/instrumentação , Humanos , Exposição Ocupacional/prevenção & controle , Staphylococcus aureus/crescimento & desenvolvimento
7.
Artigo em Inglês | MEDLINE | ID: mdl-30200464

RESUMO

This work aims at understanding the effects of various dust-loading conditions and the type of nonwovens used in the construction of FFRs on the safe use of those protective devices in situations of exposure to biological agents. The survival of microorganisms (Escherichia coli, Candida albicans, and Aspergillus niger) in dust-loaded polypropylene nonwovens (melt-blown, spun-bonded, and needle-punched) was experimentally determined using microbiological quantitative method (AATCC TM 100-2004). Scanning electron microscope was used to assess biofilm formation on dust-loaded filtering nonwovens. The impact of the growth of microorganisms on filtration efficiency of nonwovens was analysed based on the measurements of penetration of sodium chloride particles (size range 7⁻270 nm). Results showed that tested microorganisms were able to survive on dust-loaded polypropylene filtering nonwovens. The survival rate of microorganisms and penetration of nanoparticles and submicron particles depended on the type of microorganism, as well as the type and the amount of dust, which indicates that both of those factors should be considered for FFR use recommendations.


Assuntos
Poeira , Filtração/instrumentação , Dispositivos de Proteção Respiratória/microbiologia , Aspergillus niger/isolamento & purificação , Candida albicans/isolamento & purificação , Escherichia coli/isolamento & purificação , Nanopartículas , Polipropilenos , Cloreto de Sódio
8.
Artigo em Inglês | MEDLINE | ID: mdl-29702619

RESUMO

The aim of the present study was to evaluate the relation between the chemical (analysis of elements and pH) and microbiological composition (culture and metagenomics analysis) of the dust at various workplaces (cement plant, composting plant, poultry farm, and cultivated area) and the cytotoxicity effect on the human adenocarcinoma lung epithelial adherent cell line A-549 (MTT assay test). Analysis of the Particulate Matter (PM) fraction showed that the dust concentration in cultivated areas exceeded the OELs. For the remaining workplaces examined, the dust concentration was lower than OELs limits. The number of microorganisms in the dust samples was 3.8 × 10²â»1.6 × 108 CFU/g bacteria and 1.5 × 10²â»6.5 × 106 CFU/g fungi. The highest number of microorganisms was noted for dust from cultivated areas (total number of bacteria, actinomycetes, P. fluorescens) and composting plants (xerophilic fungi and staphylococci), while the least number of microorganisms was observed for dust from cement plants. Many types of potentially pathogenic microorganisms have been identified, including bacteria, such as Bacillus, Actinomyces, Corynebacterium, Prevotella, Clostridium, and Rickettsia, and fungi, such as Alternaria, Cladosporium, Penicillium, and Aspergillus. The most cytotoxic to the human lung cell line A-549 was dust from cultivated areas (IC50 = 3.8 mg/mL after 72 h). The cytotoxicity of the tested dust samples depends on the PM concentration, the number of microorganisms, including potentially pathogenic genera, and the exposure time.


Assuntos
Bactérias/isolamento & purificação , Poeira/análise , Microbiologia Ambiental , Fungos/isolamento & purificação , Exposição Ocupacional/análise , Células A549 , Animais , Bactérias/classificação , Humanos , Aves Domésticas , Testes de Toxicidade , Local de Trabalho/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA