Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Protein Sci ; 31(9): e4387, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36040254

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is a chromatin-modifying assembly that regulates gene expression and DNA damage repair. Despite its importance, limited structural information describing the complete NuRD complex is available and a detailed understanding of its mechanism is therefore lacking. Drawing on information from SEC-MALLS, DIA-MS, XLMS, negative-stain EM, X-ray crystallography, NMR spectroscopy, secondary structure predictions, and homology models, we applied Bayesian integrative structure determination to investigate the molecular architecture of three NuRD sub-complexes: MTA1-HDAC1-RBBP4, MTA1N -HDAC1-MBD3GATAD2CC , and MTA1-HDAC1-RBBP4-MBD3-GATAD2A [nucleosome deacetylase (NuDe)]. The integrative structures were corroborated by examining independent crosslinks, cryo-EM maps, biochemical assays, known cancer-associated mutations, and structure predictions from AlphaFold. The robustness of the models was assessed by jack-knifing. Localization of the full-length MBD3, which connects the deacetylase and chromatin remodeling modules in NuRD, has not previously been possible; our models indicate two different locations for MBD3, suggesting a mechanism by which MBD3 in the presence of GATAD2A asymmetrically bridges the two modules in NuRD. Further, our models uncovered three previously unrecognized subunit interfaces in NuDe: HDAC1C -MTA1BAH , MTA1BAH -MBD3MBD , and HDAC160-100 -MBD3MBD . Our approach also allowed us to localize regions of unknown structure, such as HDAC1C and MBD3IDR , thereby resulting in the most complete and robustly cross-validated structural characterization of these NuRD sub-complexes so far.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Nucleossomos , Teorema de Bayes , Montagem e Desmontagem da Cromatina , Histona Desacetilases/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo
2.
Cell Rep ; 33(9): 108450, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264611

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is essential for metazoan development but has been refractory to biochemical analysis. We present an integrated analysis of the native mammalian NuRD complex, combining quantitative mass spectrometry, cross-linking, protein biochemistry, and electron microscopy to define the architecture of the complex. NuRD is built from a 2:2:4 (MTA, HDAC, and RBBP) deacetylase module and a 1:1:1 (MBD, GATAD2, and Chromodomain-Helicase-DNA-binding [CHD]) remodeling module, and the complex displays considerable structural dynamics. The enigmatic GATAD2 controls the asymmetry of the complex and directly recruits the CHD remodeler. The MTA-MBD interaction acts as a point of functional switching, with the transcriptional regulator PWWP2A competing with MBD for binding to the MTA-HDAC-RBBP subcomplex. Overall, our data address the long-running controversy over NuRD stoichiometry, provide imaging of the mammalian NuRD complex, and establish the biochemical mechanism by which PWWP2A can regulate NuRD composition.


Assuntos
Regulação da Expressão Gênica/genética , Histona Desacetilases/metabolismo , Nucleossomos/metabolismo , Humanos , Modelos Moleculares
3.
PLoS One ; 10(7): e0131944, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147095

RESUMO

Obesity and its co-morbidities, such as fatty liver disease, are increasingly prevalent worldwide health problems. Intestinal microorganisms have emerged as critical factors linking diet to host physiology and metabolic function, particularly in the context of lipid homeostasis. We previously demonstrated that deletion of the cytoplasmic lipid drop (CLD) protein Perilipin-2 (Plin2) in mice largely abrogates long-term deleterious effects of a high fat (HF) diet. Here we test the hypotheses that Plin2 function impacts the earliest steps of HF diet-mediated pathogenesis as well as the dynamics of diet-associated changes in gut microbiome diversity and function. WT and perilipin-2 null mice raised on a standard chow diet were randomized to either low fat (LF) or HF diets. After four days, animals were assessed for changes in physiological (body weight, energy balance, and fecal triglyceride levels), histochemical (enterocyte CLD content), and fecal microbiome parameters. Plin2-null mice had significantly lower respiratory exchange ratios, diminished frequencies of enterocyte CLDs, and increased fecal triglyceride levels compared with WT mice. Microbiome analyses, employing both 16S rRNA profiling and metagenomic deep sequencing, indicated that dietary fat content and Plin2 genotype were significantly and independently associated with gut microbiome composition, diversity, and functional differences. These data demonstrate that Plin2 modulates rapid effects of diet on fecal lipid levels, enterocyte CLD contents, and fuel utilization properties of mice that correlate with structural and functional differences in their gut microbial communities. Collectively, the data provide evidence of Plin2 regulated intestinal lipid uptake, which contributes to rapid changes in the gut microbial communities implicated in diet-induced obesity.


Assuntos
Fígado Gorduroso/metabolismo , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Adiposidade/fisiologia , Animais , Peso Corporal , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Fezes/microbiologia , Intestinos/microbiologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perilipina-2 , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA