Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Perioper Pract ; : 17504589241228201, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589993

RESUMO

The United Kingdom's Fifth National Audit Project investigated the incidence and causes of accidental awareness during general anaesthesia. Subsequently, guidelines produced by the Association of Anaesthetists of Great Britain and Ireland provide key recommendations to minimise awareness. These include using processed electroencephalogram for patients receiving total intravenous anaesthesia while paralysed and using audible low end-tidal anaesthetic concentration alarms. The Southcoast Perioperative Audit and Research Collaboration undertook a five-day regional service evaluation, assessing the measures in place to minimise awareness and conducting a practitioner survey. Eight hospitals participated with 382 theatre attendances were analysed. Processed electroencephalograph monitoring for patients receiving total intravenous anaesthesia with neuromuscular blockade has been widely adopted into regional practice, from 23% of cases in the Fifth National Audit Project, to 85% in this snapshot. During volatile anaesthesia, age-adjusted low end-tidal anaesthetic concentration alarms were used in 34% cases. The range was 0-97% at different hospitals, suggesting heterogeneity in practice. Seventy-six per cent of anaesthetists rarely alter the default anaesthetic machine alarm settings. Therefore, instigating default low end-tidal anaesthetic concentration alarms could improve compliance with guidelines and reduce the risk of awareness for patients.

2.
Cryst Growth Des ; 24(8): 3277-3288, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659658

RESUMO

Precision measurement of the growth rate of individual single crystal facets (hkl) represents an important component in the design of industrial crystallization processes. Current approaches for crystal growth measurement using optical microscopy are labor intensive and prone to error. An automated process using state-of-the-art computer vision and machine learning to segment and measure the crystal images is presented. The accuracies and efficiencies of the new crystal sizing approach are evaluated against existing manual and semi-automatic methods, demonstrating equivalent accuracy but over a much shorter time, thereby enabling a more complete kinematic analysis of the overall crystallization process. This is applied to measure in situ the crystal growth rates and through this determining the associated kinetic mechanisms for the crystallization of ß-form l-glutamic acid from the solution phase. Growth on the {101} capping faces is consistent with a Birth and Spread mechanism, in agreement with the literature, while the growth rate of the {021} prismatic faces, previously not available in the literature, is consistent with a Burton-Cabrera-Frank screw dislocation mechanism. At a typical supersaturation of σ = 0.78, the growth rate of the {101} capping faces (3.2 × 10-8 m s-1) is found to be 17 times that of the {021} prismatic faces (1.9 × 10-9 m s-1). Both capping and prismatic faces are found to have dead zones in their growth kinetic profiles, with the capping faces (σc = 0.23) being about half that of the prismatic faces (σc = 0.46). The importance of this overall approach as an integral component of the digital design of industrial crystallization processes is highlighted.

3.
Heliyon ; 10(7): e28443, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560216

RESUMO

Dynamic DNA nanotechnology is driving exciting developments in molecular computing, cargo delivery, sensing and detection. Combining this innovative area of research with the progress made in machine learning will aid in the design of sophisticated DNA machinery. Herein, we present a novel framework based on a transformer architecture and a deep learning model which can predict the rate constant of toehold-mediated strand displacement, the underlying process in dynamic DNA nanotechnology. Initially, a dataset of 4450 DNA sequences and corresponding rate constants were generated in-silico using KinDA. Subsequently, a 1D convolution neural network was trained using specific local features and DNA-BERT sequence embedding to produce predicted rate constants. As a result, the newly trained deep learning model predicted toehold-mediated strand displacement rate constants with a root mean square error of 0.76, during testing. These findings demonstrate that DNA-BERT can improve prediction accuracy, negating the need for extensive computational simulations or experimentation. Finally, the impact of various local features during model training is discussed, and a detailed comparison between the One-hot encoder and DNA-BERT sequences representation methods is presented.

4.
PLoS One ; 18(12): e0296379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38153940

RESUMO

BACKGROUND: COVID-19 placed immense strain on healthcare systems, necessitating innovative responses to the surge of critically ill patients, particularly those requiring mechanical ventilation. In this report, we detail the establishment of a dedicated critical care prone positioning team at University Hospital Southampton in response to escalating demand for prone positioning during the initial wave of the pandemic. METHODS: The formation of a prone positioning team involved meticulous planning and collaboration across disciplines to ensure safe and efficient manoeuvrers. A comprehensive training strategy, aligned with national guidelines, was implemented for approximately 550 staff members from a diverse background. We surveyed team members to gain insight to the lived experience. RESULTS: A total of 78 full-time team members were recruited and successfully executed over 1200 manoeuvres over an eight-week period. Our survey suggests the majority felt valued and expressed pride and willingness to participate again should the need arise. CONCLUSION: The rapid establishment and deployment of a dedicated prone positioning team may have contributed to both patient care and staff well-being. We provide insight and lessons that may be of value for future respiratory pandemics. Future work should explore objective clinical outcomes and long-term sustainability of such services.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Respiração Artificial , Unidades de Terapia Intensiva , Atenção à Saúde , Decúbito Ventral
5.
BJA Open ; 8: 100233, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37869058

RESUMO

In this editorial, we discuss a large observational study demonstrating increased healthcare usage and higher mortality over 2 yr in patients who experienced specific postoperative complications. These findings are in keeping with the existing literature and draw into focus the need for ongoing work to understand and communicate these long-term consequences to patients.

6.
J Clin Med ; 12(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445260

RESUMO

The COVID-19 pandemic led to a broad implementation of proning to enhance oxygenation in both self-ventilating and mechanically ventilated critically ill patients with acute severe hypoxic respiratory failure. However, there is little data on the impact of the timing of the initiation of prone positioning in COVID-19 patients receiving mechanical ventilation. In this study, we analyzed our proning practices in mechanically ventilated COVID-19 patients. There were 931 total proning episodes in 144 patients, with a median duration of 16 h (IQR 15-17 h) per proning cycle. 563 proning cycles were initiated within 7 days of intubation (early), 235 within 7-14 days (intermediate), and 133 after 14 days (late). The mean change in oxygenation defined as the delta PaO2/FiO2 ratio (ΔPF) after the prone episode was 16.6 ± 34.4 mmHg (p < 0.001). For early, intermediate, and late cycles, mean ΔPF ratios were 18.5 ± 36.7 mmHg, 13.2 ± 30.4 mmHg, and 14.8 ± 30.5 mmHg, with no significant difference in response between early, intermediate, and late proning (p = 0.2), respectively. Our findings indicate a favorable oxygenation response to proning episodes at all time points, even after >14 days of intubation. However, the findings cannot be translated directly into a survival advantage, and more research is needed in this area.

7.
Data Brief ; 48: 109198, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383827

RESUMO

The data presented in this article relates to the crystallisation of 8 single n-alkanes, C16H34 - C23H48 in representative diesel solvents dodecane and toluene, as well as a mixture of these 8-alkanes with a composition representative of real diesel fuel in the same solvents. For the single alkane systems, the data was collected over a range of 5 concentrations ranging from 0.09 - 0.311xi, depending upon the system, and 4 concentrations for the 8-alkane mixture, 0.1 - 0.5xi. Raw average crystallisation and dissolution points as a function of cooling rate (q) from a polythermal methodology are presented. Along with the equilibrium crystallisation and dissolution temperatures, van't Hoff fitting parameters, relative critical undercooling (uc) values as a function of q as well as the calculated values of KG and αdet.

8.
Br J Anaesth ; 130(4): 404-411, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697275

RESUMO

BACKGROUND: Mortality, morbidity, and organ failure are important and common serious harms after surgery. However, there are many candidate measures to describe these outcome domains. Definitions of these measures are highly variable, and validity is often unclear. As part of the International Standardised Endpoints in Perioperative Medicine (StEP) initiative, this study aimed to derive a set of standardised and valid measures of mortality, morbidity, and organ failure for use in perioperative clinical trials. METHODS: Three domains of endpoints (mortality, morbidity, and organ failure) were explored through systematic literature review and a three-stage Delphi consensus process using methods consistently applied across the StEP initiative. Reliability, feasibility, and patient-centredness were assessed in round 3 of the consensus process. RESULTS: A high level of consensus was achieved for two mortality time points, 30-day and 1-yr mortality, and these two measures are recommended. No organ failure endpoints achieved threshold criteria for consensus recommendation. The Clavien-Dindo classification of complications achieved threshold criteria for consensus in round 2 of the Delphi process but did not achieve the threshold criteria in round 3 where it scored equivalently to the Post Operative Morbidity Survey. Clavien-Dindo therefore received conditional endorsement as the most widely used measure. No composite measures of organ failure achieved an acceptable level of consensus. CONCLUSIONS: Both 30-day and 1-yr mortality measures are recommended. No measure is recommended for organ failure. One measure (Clavien-Dindo) is conditionally endorsed for postoperative morbidity, but our findings suggest that no single endpoint offers a reliable and valid measure to describe perioperative morbidity that is not dependent on the quality of deli-vered care. Further refinement of current measures, or development of novel measures, of postoperative morbidity might improve consensus in this area.


Assuntos
Assistência Perioperatória , Medicina Perioperatória , Humanos , Assistência Perioperatória/métodos , Consenso , Reprodutibilidade dos Testes , Morbidade , Técnica Delphi
10.
PLoS One ; 17(6): e0269471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35687543

RESUMO

BACKGROUND: Acute hypoxic respiratory failure (AHRF) is a hallmark of severe COVID-19 pneumonia and often requires supplementary oxygen therapy. Critically ill COVID-19 patients may require invasive mechanical ventilation, which carries significant morbidity and mortality. Understanding of the relationship between dynamic changes in blood oxygen indices and clinical variables is lacking. We evaluated the changes in blood oxygen indices-PaO2, PaO2/FiO2 ratio, oxygen content (CaO2) and oxygen extraction ratio (O2ER) in COVID-19 patients through the first 30-days of intensive care unit admission and explored relationships with clinical outcomes. METHODS AND FINDINGS: We performed a retrospective observational cohort study of all adult COVID-19 patients in a single institution requiring invasive mechanical ventilation between March 2020 and March 2021. We collected baseline characteristics, clinical outcomes and blood oxygen indices. 36,383 blood gas data points were analysed from 184 patients over 30-days. Median participant age was 59.5 (IQR 51.0, 67.0), BMI 30.0 (IQR 25.2, 35.5) and the majority were men (62.5%) of white ethnicity (70.1%). Median duration of mechanical ventilation was 15-days (IQR 8, 25). Hospital survival at 30-days was 72.3%. Non-survivors exhibited significantly lower PaO2 throughout intensive care unit admission: day one to day 30 averaged mean difference -0.52 kPa (95% CI: -0.59 to -0.46, p<0.01). Non-survivors exhibited a significantly lower PaO2/FiO2 ratio with an increased separation over time: day one to day 30 averaged mean difference -5.64 (95% CI: -5.85 to -5.43, p<0.01). While all patients had sub-physiological CaO2, non-survivors exhibited significantly higher values. Non-survivors also exhibited significantly lower oxygen extraction ratio with an averaged mean difference of -0.08 (95% CI: -0.09 to -0.07, p<0.01) across day one to day 30. CONCLUSIONS: As a novel cause of acute hypoxic respiratory failure, COVID-19 offers a unique opportunity to study a homogenous cohort of patients with hypoxaemia. In mechanically ventilated adult COVID-19 patients, blood oxygen indices are abnormal with substantial divergence in PaO2/FiO2 ratio and oxygen extraction ratio between survivors and non-survivors. Despite having higher CaO2 values, non-survivors appear to extract less oxygen implying impaired oxygen utilisation. Further exploratory studies are warranted to evaluate and improve oxygen extraction which may help to improve outcomes in severe hypoxaemic mechanically ventilated COVID-19 patients.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Adulto , COVID-19/terapia , Estudos de Coortes , Feminino , Humanos , Hipóxia , Masculino , Oxigênio , Respiração Artificial , Insuficiência Respiratória/terapia , Estudos Retrospectivos , SARS-CoV-2
11.
Nat Commun ; 13(1): 3746, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768404

RESUMO

Engineering subcellular organization in microbes shows great promise in addressing bottlenecks in metabolic engineering efforts; however, rules guiding selection of an organization strategy or platform are lacking. Here, we study compartment morphology as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol utilization microcompartment (Pdu MCP) system from Salmonella enterica serovar Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic function between these Pdu microtubes (MTs) shows that they provide a diffusional barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to native MCPs. However, kinetic modeling suggests that the different surface area to volume ratios of MCP and MT structures alters encapsulated pathway performance. Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT formation to enable future engineering efforts on these structures.


Assuntos
Proteínas de Bactérias , Salmonella typhimurium , Proteínas de Bactérias/metabolismo , Engenharia Metabólica , Propilenoglicol/metabolismo , Salmonella typhimurium/metabolismo
12.
Macromol Biosci ; 22(7): e2100472, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35261175

RESUMO

Environmental accumulation of non-degradable polystyrene (PS) microparticles from plastic waste poses potential adverse impact on marine life and human health. Herein, microparticles from a degradable PS analogue (dePS) are formulated and their immuno-modulatory characteristics are comprehensively evaluated. Both dePS copolymer and microparticles are chemically degradable under accelerated hydrolytic condition. In vitro studies show that dePS microparticles are non-toxic to three immortalized cell lines. While dePS microparticles do not induce macrophage polarization in vitro, dePS microparticles induce in vivo upregulation of both pro-inflammatory and anti-inflammatory biomarkers in immuno-competent mice, suggesting the coexistence of mixed phenotypes of macrophages in the host immune response to these microparticles. Interestingly, on day 7 following subcutaneous in mice, dePS microparticles induce a lower level of several immuno-modulatory biomarkers (matrix metallo-proteinases (MMPs), tumor necrosis factor (TNF-α), and arginase activity) compared to that of reference poly(lactic-co-glycolic acid) microparticles. Remarkably, compared to PS microparticles, dePS microparticles exhibit similar in vitro and in vivo bioactivity while acquiring additional chemical degradability. Overall, this study gains new insights into the host immune response to dePS microparticles and suggests that this dePS analogue might be explored as an alternative material choice for biomedical and consumer care applications.


Assuntos
Macrófagos , Poliestirenos , Animais , Humanos , Imunidade , Macrófagos/metabolismo , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Poliestirenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Chemosphere ; 293: 133487, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34995623

RESUMO

Degradable poly(acrylic acid) has been prepared via free radical ring-opening copolymerization of tert-butyl acrylate and 2-methylene-1,3-dioxepane followed by tert-butyl deprotection, under acidic conditions. The resulting degradable poly(acrylic acid) analogue possesses ester groups within the backbone, which facilitate environmental hydrolysis into short chain oligomers, which subsequently undergo biodegradation. The degradable poly(acrylic acid) reported displays a significant degree of biodegradability (27.50% in 28 days) under environmental conditions, when compared to a conventional all carbon backbone non-degradable version, which shows no biodegradability.


Assuntos
Resinas Acrílicas , Polímeros , Radicais Livres , Polimerização , Polímeros/metabolismo
14.
Eur J Pharmacol ; 914: 174667, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34863711

RESUMO

Antagonists of the P2X7 receptor (P2X7R) have the potential to treat diseases where neuroinflammation is present such as depression, chronic pain and Alzheimer's disease. We recently developed a structural hybrid (C1; 1-((adamantan-1-yl)methyl)-2-cyano-3-(quinolin-5-yl)guanidine) of a purported competitive P2X7R antagonist (C2; 2-cyano-1-((1S)-1-phenylethyl)-3-(quinolin-5-yl)guanidine) and a likely negative allosteric modulator (NAM) of the P2X7R (C3; N-((adamantan-1-yl)methyl)-2-chloro-5-methoxybenzamide). Here we aimed to pharmacologically characterize C1, to gain insights into how select structural components impact antagonist interaction with the P2X7R. A second aim was to examine the role of the peptide LL-37, an apparent activator of the P2X7R, and compare the ability of multiple P2X7R antagonists to block its effects. Compounds 1, 2 and 3 were characterised using washout, Schild and receptor protection studies, all using dye uptake assays in HEK293 cells expressing the P2X7R. LL-37 was examined in the same HEK293 cells and THP-1 monocytes. Compounds 2 and 3 acted as a BzATP-competitive antagonist and NAM of the P2X7R respectively. Compound 1 was a slowly reversible NAM of the P2X7R suggesting the incorporation of an appropriately positioned adamantane promotes binding to the allosteric site of the P2X7R. LL-37 was shown to potentiate the ability of ATP to induce dye uptake at low concentrations (1-3 µg mL-1) or induce dye uptake alone at higher concentrations (10-20 µg mL-1). None of the P2X7R antagonists studied were able to block LL-37-induced dye uptake bringing in to question the ability of current P2X7R antagonists to inhibit the inflammatory action of LL-37 in vivo.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Doenças Neuroinflamatórias , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Desenvolvimento de Medicamentos , Células HEK293 , Humanos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Porinas/metabolismo , Agonistas Purinérgicos/farmacologia , Antagonistas do Receptor Purinérgico P2X/classificação , Antagonistas do Receptor Purinérgico P2X/farmacologia , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Células THP-1 , Catelicidinas
15.
J Neurosci ; 41(46): 9539-9560, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34642212

RESUMO

The lateral hypothalamic area (LHA) is a highly conserved brain region critical for maintaining physiological homeostasis and goal-directed behavior. LHA neurons that express melanin-concentrating hormone (MCH) are key regulators of arousal, energy balance, and motivated behavior. However, cellular and functional diversity among LHAMCH neurons is not well understood. Previous anatomic and molecular data suggest that LHAMCH neurons may be parsed into at least two distinct subpopulations, one of which is enriched in neurokinin-3 receptor (NK3R), the receptor for neurokinin B (NKB), encoded by the Tac2 gene. This tachykininergic ligand-receptor system has been implicated in reproduction, fear memory, and stress in other brain regions, but NKB interactions with LHAMCH neurons are poorly understood. We first identified how LHAMCH subpopulations may be distinguished anatomically and electrophysiologically. To dissect functional connectivity between NKB-expressing neurons and LHAMCH neurons, we used Cre-dependent retrograde and anterograde viral tracing in male Tac2-Cre mice and identified Tac2/EYFP+ neurons in the bed nucleus of the stria terminalis and central nucleus of the amygdala, the central extended amygdala, as major sources of NKB input onto LHAMCH neurons. In addition to innervating the LHA, these limbic forebrain NKB neurons also project to midbrain and brainstem targets. Finally, using a dual-virus approach, we found that optogenetic activation of these inputs in slices evokes GABA release onto a subset of LHAMCH neurons but lacked specificity for the NK3R+ subpopulation. Overall, these data define parallel tachykininergic/GABAergic limbic forebrain projections that are positioned to modulate multiple nodes of homeostatic and behavioral control.SIGNIFICANCE STATEMENT The LHA orchestrates fundamental behavioral states in the mammalian hypothalamus, including arousal, energy balance, memory, stress, and motivated behavior. The neuropeptide MCH defines one prominent population of LHA neurons, with multiple roles in the regulation of homeostatic behavior. Outstanding questions remain concerning the upstream inputs that control MCH neurons. We sought to define neurochemically distinct pathways in the mouse brain that may communicate with specific MCH neuron subpopulations using viral-based retrograde and anterograde neural pathway tracing and optogenetics in brain slices. Here, we identify a specific neuropeptide-defined forebrain circuit that makes functional synaptic connections with MCH neuron subpopulations. This work lays the foundation for further manipulating molecularly distinct neural circuits that modulate innate behavioral states.


Assuntos
Núcleo Central da Amígdala/citologia , Região Hipotalâmica Lateral/citologia , Vias Neurais/citologia , Neurônios/citologia , Animais , Hormônios Hipotalâmicos/metabolismo , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo
16.
Elife ; 92020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33119507

RESUMO

The ventral posterior hypothalamus (VPH) is an anatomically complex brain region implicated in arousal, reproduction, energy balance, and memory processing. However, neuronal cell type diversity within the VPH is poorly understood, an impediment to deconstructing the roles of distinct VPH circuits in physiology and behavior. To address this question, we employed a droplet-based single-cell RNA sequencing (scRNA-seq) approach to systematically classify molecularly distinct cell populations in the mouse VPH. Analysis of >16,000 single cells revealed 20 neuronal and 18 non-neuronal cell populations, defined by suites of discriminatory markers. We validated differentially expressed genes in selected neuronal populations through fluorescence in situ hybridization (FISH). Focusing on the mammillary bodies (MB), we discovered transcriptionally-distinct clusters that exhibit neuroanatomical parcellation within MB subdivisions and topographic projections to the thalamus. This single-cell transcriptomic atlas of VPH cell types provides a resource for interrogating the circuit-level mechanisms underlying the diverse functions of VPH circuits.


Assuntos
Hipotálamo Posterior/citologia , Animais , Feminino , Perfilação da Expressão Gênica , Hipotálamo Posterior/anatomia & histologia , Hipotálamo Posterior/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética , Análise de Sequência de RNA , Análise de Célula Única
17.
F1000Res ; 9: 859, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110499

RESUMO

Critically ill patients admitted to hospital following SARS-CoV-2 infection often experience hypoxic respiratory failure and a proportion require invasive mechanical ventilation to maintain adequate oxygenation. The combination of prone positioning and non-invasive ventilation in conscious patients may have a role in improving oxygenation. The purpose of this study was to assess the effect of prone positioning in spontaneously ventilating patients receiving non-invasive ventilation admitted to the intensive care.  Clinical data of 81 patients admitted with COVID 19 pneumonia and acute hypoxic respiratory failure were retrieved from electronic medical records and examined. Patients who had received prone positioning in combination with non-invasive ventilation were identified. A total of 20 patients received prone positioning in conjunction with non-invasive ventilation. This resulted in improved oxygenation as measured by a change in PaO 2/FiO 2 (P/F) ratio of 28.7 mmHg while prone, without significant change in heart rate or respiratory rate. Patients on average underwent 5 cycles with a median duration of 3 hours. There were no reported deaths, 7 of the 20 patients (35%) failed non-invasive ventilation and subsequently required intubation and mechanical ventilation. In our cohort of 20 COVID-19 patients with moderate acute hypoxic respiratory failure, prone positioning with non-invasive ventilation resulted in improved oxygenation. Prone positioning with non-invasive ventilation may be considered as an early therapeutic intervention in COVID-19 patients with moderate acute hypoxic respiratory failure.


Assuntos
Infecções por Coronavirus/terapia , Ventilação não Invasiva , Posicionamento do Paciente , Pneumonia Viral/terapia , Decúbito Ventral , Betacoronavirus , COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
19.
Nucl Med Biol ; 88-89: 44-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32777548

RESUMO

INTRODUCTION: Prenatal ethanol exposure (PEE) has been shown to alter the level and function of receptors in the brain, one of which is GABAa receptors (GABAaR), the major inhibitory ligand gated ion channels that mediate neuronal inhibition. High dose PEE in animals resulted in the upregulation of GABAaR, but the effects of low and moderate dose PEE at early gestation have not been investigated. This study aimed at examining GABAaR density in the adult mouse brain following PEE during a period equivalent to the first 3 to 4 weeks in human gestation. It was hypothesized that early moderate PEE would cause alterations in brain GABAaR levels in the adult offspring. METHODS: C57BL/6J mice were given 10% v/v ethanol during the first 8 gestational days. Male offspring were studied using in-vivo Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI), biodistribution, in-vitro autoradiography using [18F]AH114726, a novel flumazenil analogue with a high affinity for the benzodiazepine-binding site, and validated using immunohistochemistry. RESULTS: In vivo PET and biodistribution did not detect alteration in brain tracer uptake. In vitro radiotracer studies detected significantly reduced GABAaR in the olfactory bulbs. Immunohistochemistry detected reduced GABAaR in the cerebral cortex, cerebellum and hippocampus, while Nissl staining showed that cell density was significantly higher in the striatum following PEE. CONCLUSION: Early moderate PEE may induce long-term alterations in the GABAaR system that persisted into adulthood.


Assuntos
Benzodiazepinas/química , Encéfalo/metabolismo , Etanol/toxicidade , Flumazenil/metabolismo , Radioisótopos de Flúor/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Receptores de GABA-A/metabolismo , Animais , Depressores do Sistema Nervoso Central/toxicidade , Modelos Animais de Doenças , Feminino , Flumazenil/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual
20.
Chem Commun (Camb) ; 56(68): 9838-9841, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32716464

RESUMO

Radical ring-opening copolymerization (rROP) between 2-methylene-1,3-dioxepane (MDO) and methacrylic acid N-hydroxysuccinimide ester (NHSMA) furnishes a reactive polyester-based linear copolymer precursor. Subsequent cross-linker mediated chain collapse affords degradable single-chain nanoparticles (DSCNPs). This methodology is an experimentally robust and straightforward route to main-chain degradable polymeric nanoparticles in the sub-30 nm size range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA