Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762698

RESUMO

Low back pain (LBP) is a common musculoskeletal complaint that can impede physical function and mobility. Current management often involves pain medication, but there is a need for non-pharmacological and non-invasive interventions. Soft tissue manipulation (STM), such as massage, has been shown to be effective in human subjects, but the molecular mechanisms underlying these findings are not well understood. In this paper, we evaluated potential changes in the soft tissue levels of more than thirty pro- or anti-inflammatory cytokines following instrument-assisted STM (IASTM) in rats with chronic, induced LBP using Complete Freund's Adjuvant. Our results indicate that IASTM is associated with reduced soft tissue levels of Regulated on Activation, Normal T cell Expressed and Secreted (RANTES)/Chemokine (C-C motif) ligand 5 (CCL5) and increased soft tissue levels of Interleukin (IL)-4, which are pro-inflammatory and anti-inflammatory factors, respectively, by 120 min post-treatment. IASTM was not associated with tissue-level changes in C-X-C Motif Chemokine Ligand (CXCL)-5/Lipopolysaccharide-Induced CXC Chemokine (LIX)-which is the murine homologue of IL-8, CXCL-7, Granulocyte-Macrophage-Colony Simulating Factor (GM-CSF), Intercellular Adhesion Molecule (ICAM)-1, IL1-Receptor Antagonist (IL-1ra), IL-6, Interferon-Inducible Protein (IP)-10/CXCL-10, L-selectin, Tumor Necrosis Factor (TNF)-α, or Vascular Endothelial Growth Factor (VEGF) at either 30 or 120 min post-treatment. Combined, our findings raise the possibility that IASTM may exert tissue-level effects associated with improved clinical outcomes and potentially beneficial changes in pro-/anti-inflammatory cytokines in circulation and at the tissue level.

2.
Biochem Biophys Res Commun ; 524(4): 890-894, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32057362

RESUMO

Osteoporosis is a disease of low bone mass that places individuals at enhanced risk for fracture, disability, and death. Osteoporosis rates are expected to rise significantly in the coming decades yet there are limited pharmacological treatment options, particularly for long-term management of this chronic condition. The drug development pipeline is relatively bereft of new strategies, causing an urgent and unmet need for developing new strategies and targets for treating osteoporosis. Here, we examine a lesser-studied bone remodeling pathway, Neuromedin U (NMU), which is expressed in the bone microenvironment along with its cognate receptors NMU receptor 1 (NMUR1) and 2 (NMUR2). We independently corroborate a prior report that global loss of NMU expression leads to high bone mass and test the hypothesis that NMU negatively regulates osteoblast differentiation. Consistent with this, in vitro studies reveal NMU represses osteoblastic differentiation of osteogenic precursors but, in contrast, promotes osteoblastic marker expression, proliferation and activity of osteoblast-like cells. Phospho-profiling arrays were used to detail differential signaling outcomes that may underlie the opposite responses of these cell types. Collectively, our findings indicate that NMU exerts cell-type-specific responses to regulate osteoblast differentiation and activity.


Assuntos
Neuropeptídeos/genética , Osteoblastos/metabolismo , Osteoporose/genética , Fosfoproteínas/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Receptores de Neurotransmissores/genética , Animais , Densidade Óssea , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Linhagem Celular , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Neuropeptídeos/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Osteoporose/metabolismo , Osteoporose/patologia , Fosfoproteínas/classificação , Fosfoproteínas/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA