Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 24(7): 102748, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34278258

RESUMO

The cap-binding protein eukaryotic initiation factor 4E (eIF4E) promotes translation of mRNAs associated with proliferation and survival and is an attractive target for cancer therapeutics. Here, we used Eif4e germline and conditional knockout models to assess the impact of reduced Eif4e gene dosage on B-cell leukemogenesis compared to effects on normal pre-B and mature B-cell function. Using a BCR-ABL-driven pre-B-cell leukemia model, we find that loss of one allele of Eif4e impairs transformation and reduces fitness in competition assays in vitro and in vivo. In contrast, reduced Eif4e gene dosage had no significant effect on development of pre-B and mature B cells or on survival or proliferation of non-transformed B lineage cells. These results demonstrate that inhibition of eIF4E could be a new therapeutic tool for pre-B-cell leukemia while preserving development and function of normal B cells.

2.
J Immunol ; 202(2): 579-590, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530594

RESUMO

During an adaptive immune response, activated mature B cells give rise to Ab-secreting plasma cells to fight infection. B cells undergo Ab class switching to produce different classes of Abs with varying effector functions. The mammalian/mechanistic target of rapamycin (mTOR) signaling pathway is activated during this process, and disrupting mTOR complex 1 (mTORC1) in B cells impairs class switching by a poorly understood mechanism. In particular, it is unclear which mTORC1 downstream substrates control this process. In this study, we used an in vitro murine model in which the mTORC1 inhibitor rapamycin, when added after a B cell has committed to divide, suppresses class switching while preserving proliferation. Investigation of mTORC1 substrates revealed a role for eukaryotic translation initiation factor 4E (eIF4E) and eIF4E-binding proteins in class switching. Mechanistically, we show that genetic or pharmacological disruption of eIF4E binding to eIF4G reduced cap-dependent translation, which specifically affected the expression of activation-induced cytidine deaminase protein but not Aicda mRNA. This translational impairment decreased Ab class switching independently of proliferation. These results uncover a previously undescribed role for mTORC1 and the eIF4E-binding proteins/eIF4E axis in activation-induced cytidine deaminase protein expression and Ab class switching in mouse B cells, suggesting that cap-dependent translation regulates key steps in B cell differentiation.


Assuntos
Linfócitos B/imunologia , Proteínas de Transporte/imunologia , Fator de Iniciação 4E em Eucariotos/imunologia , Switching de Imunoglobulina , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Fosfoproteínas/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linfócitos B/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Células Cultivadas , Fator de Iniciação 4E em Eucariotos/genética , Fatores de Iniciação em Eucariotos , Regulação da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfoproteínas/genética , Ligação Proteica , Biossíntese de Proteínas , Transdução de Sinais , Sirolimo/farmacologia
3.
Front Immunol ; 8: 747, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713374

RESUMO

The class I phosphoinoside-3-kinases (PI3Ks) are important enzymes that relay signals from cell surface receptors to downstream mediators driving cellular functions. Elevated PI3K signaling is found in B cell malignancies and lymphocytes of patients with autoimmune disease. The p110δ catalytic isoform of PI3K is a rational target since it is critical for B lymphocyte development, survival, activation, and differentiation. In addition, activating mutations in PIK3CD encoding p110δ cause a human immunodeficiency known as activated PI3K delta syndrome. Currently, idelalisib is the only selective p110δ inhibitor that has been FDA approved to treat certain B cell malignancies. p110δ inhibitors can suppress autoantibody production in mouse models, but limited clinical trials in human autoimmunity have been performed with PI3K inhibitors to date. Thus, there is a need for additional tools to understand the effect of pharmacological inhibition of PI3K isoforms in lymphocytes. In this study, we tested the effects of a potent and selective p110δ inhibitor, IPI-3063, in assays of B cell function. We found that IPI-3063 potently reduced mouse B cell proliferation, survival, and plasmablast differentiation while increasing antibody class switching to IgG1, almost to the same degree as a pan-PI3K inhibitor. Similarly, IPI-3063 potently inhibited human B cell proliferation in vitro. The p110γ isoform has partially overlapping roles with p110δ in B cell development, but little is known about its role in B cell function. We found that the p110γ inhibitor AS-252424 had no significant impact on B cell responses. A novel dual p110δ/γ inhibitor, IPI-443, had comparable effects to p110δ inhibition alone. These findings show that p110δ is the dominant isoform mediating B cell responses and establish that IPI-3063 is a highly potent molecule useful for studying p110δ function in immune cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA