Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Commun Biol ; 7(1): 632, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796563

RESUMO

The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions; therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here, we investigate the effects of a long-term (12-month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild-type (WT) Wistar male and female rats. Our main findings are that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increases thermogenesis and brain glucose uptake in male rats and modifies the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. We use RNA-sequencing to show that GHSR-KO rats have upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuates ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating is reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.


Assuntos
Dieta Hiperlipídica , Obesidade , Ratos Wistar , Receptores de Grelina , Caracteres Sexuais , Animais , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Feminino , Ratos , Obesidade/metabolismo , Obesidade/genética , Grelina/metabolismo , Termogênese/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos
2.
Res Sq ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886546

RESUMO

The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions, therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here we investigated the effects of a long-term (12 month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild type (WT) Wistar male and female rats. Our main findings were that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increased thermogenesis and brain glucose uptake in male rats and modified the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. RNA-sequencing was also used to show that GHSR-KO rats had upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuated ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating was reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.

3.
Mol Cell Biochem ; 478(11): 2567-2580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36884151

RESUMO

Breast cancer brain metastasis (BCBM) has an incidence of 10-30%. It is incurable and the biological mechanisms that promote its progression remain largely undefined. Consequently, to gain insights into BCBM processes, we have developed a spontaneous mouse model of BCBM and in this study found a 20% penetrance of macro-metastatic brain lesion formation. Considering that lipid metabolism is indispensable to metastatic progression, our goal was the mapping of lipid distributions throughout the metastatic regions of the brain. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of lipids revealed that, relative to surrounding brain tissue, seven long-chain (13-21 carbons long) fatty acylcarnitines, as well as two phosphatidylcholines, two phosphatidylinositols two diacylglycerols, a long-chain phosphatidylethanolamine, and a long-chain sphingomyelin were highly concentrated in the metastatic brain lesion In broad terms, lipids known to be enriched in brain tissues, such as very long-chain (≥ 22 carbons in length) polyunsaturated fatty acid of phosphatidylcholines, phosphatidylethanolamine, sphingomyelins, sulfatides, phosphatidylinositol phosphates, and galactosylceramides, were not found or only found in trace amounts in the metastatic lesion and instead consistently detected in surrounding brain tissues. The data, from this mouse model, highlights an accumulation of fatty acylcarnitines as possible biological makers of a chaotic inefficient vasculature within the metastasis, resulting in relatively inadequate blood flow and disruption of fatty acid ß-oxidation due to ischemia/hypoxia.

4.
J Neurochem ; 165(3): 379-390, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36815399

RESUMO

Dietary lipids, particularly omega-3 polyunsaturated fatty acids, are speculated to impact behaviors linked to the dopaminergic system, such as movement and control of circadian rhythms. However, the ability to draw a direct link between dopaminergic omega-3 fatty acid metabolism and behavioral outcomes has been limited to the use of diet-based approaches, which are confounded by systemic effects. Here, neuronal lipid metabolism was targeted in a diet-independent manner by manipulation of long-chain acyl-CoA synthetase 6 (ACSL6) expression. ACSL6 performs the initial reaction for cellular fatty acid metabolism and prefers the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). The loss of Acsl6 in mice (Acsl6-/- ) depletes neuronal membranes of DHA content and results in phenotypes linked to dopaminergic control, such as hyperlocomotion, impaired short-term spatial memory, and imbalances in dopamine neurochemistry. To investigate the role of dopaminergic ACSL6 on these outcomes, a dopaminergic neuron-specific ACSL6 knockout mouse was generated (Acsl6DA-/- ). Acsl6DA-/- mice demonstrated hyperlocomotion and imbalances in striatal dopamine neurochemistry. Circadian rhythms of both the Acsl6-/- and the Acsl6DA-/- mice were similar to control mice under basal conditions. However, upon light entrainment, a mimetic of jet lag, both the complete knockout of ACSL6 and the dopaminergic-neuron-specific loss of ACSL6 resulted in a longer recovery to entrainment compared to control mice. In conclusion, these data demonstrate that ACSL6 in dopaminergic neurons alters dopamine metabolism and regulation of light entrainment suggesting that DHA metabolism mediated by ACSL6 plays a role in dopamine neuron biology.


Assuntos
Neurônios Dopaminérgicos , Metabolismo dos Lipídeos , Camundongos , Animais , Neurônios Dopaminérgicos/metabolismo , Dopamina , Gorduras na Dieta , Dieta , Camundongos Knockout , Ácidos Docosa-Hexaenoicos/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(11): 159219, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35981704

RESUMO

The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.


Assuntos
Palmitatos , Proteostase , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacologia , Tapsigargina/metabolismo , Tapsigargina/farmacologia
6.
Anal Chem ; 94(21): 7460-7465, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35576511

RESUMO

We describe an innovative use for the recently reported fast lipid analysis technique (FLAT) that allows for the generation of MALDI tandem mass spectrometry data suitable for lipid A structure analysis directly from a single Gram-negative bacterial colony. We refer to this tandem MS version of FLAT as FLATn. Neither technique requires sophisticated sample preparation beyond the selection of a single bacterial colony, which significantly reduces overall analysis time (∼1 h), as compared to conventional methods. Moreover, the tandem mass spectra generated by FLATn provides comprehensive information on fragments of lipid A, for example, ester bonded acyl chain dissociations, cross-ring cleavages, and glycosidic bond dissociations, all of which allow the facile determination of novel lipid A structures or confirmation of expected structures. In addition to generating tandem mass spectra directly from single colonies, we also show that FLATn can be used to analyze lipid A structures taken directly from a complex biological clinical sample without the need for ex vivo growth. From a urine sample from a patient with an E. coli infection, FLATn identified the organism and demonstrated that this clinical isolate carried the mobile colistin resistance-1 gene (mcr-1) that results in the addition of a phosphoethanolamine moiety and subsequently resistance to the antimicrobial, colistin (polymyxin E). Moreover, FLATn allowed for the determination of the existence of a structural isomer in E. coli lipid A that had either a 1- or 4'-phosphate group modification by phosphoethanolamine generated by a change of bacterial culture conditions.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina , Farmacorresistência Bacteriana , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Lipídeo A , Testes de Sensibilidade Microbiana
7.
Alcohol Clin Exp Res ; 45(11): 2207-2216, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34590334

RESUMO

BACKGROUND: Ghrelin may influence several alcohol-related behaviors in animals and humans by modulating central and/or peripheral biological pathways. The aim of this exploratory analysis was to investigate associations between ghrelin administration and the human circulating metabolome during alcohol exposure in nontreatment seeking, heavy drinking individuals with alcohol use disorder (AUD). METHODS: We used serum samples from a randomized, crossover, double-blind, placebo-controlled human laboratory study with intravenous (IV) ghrelin or placebo infusion in two experiments. During each session, participants received a loading dose (3 µg/kg) followed by continuous infusion (16.9 ng/kg/min) of acyl ghrelin or placebo. The first experiment included an IV alcohol self-administration (IV-ASA) session and the second experiment included an IV alcohol clamp (IV-AC) session, both with the counterbalanced infusion of ghrelin or placebo. Serum metabolite profiles were analyzed from repeated blood samples collected during each session. RESULTS: In both experiments, ghrelin infusion was associated with an altered serum metabolite profile, including significantly increased levels of cortisol (IV-ASA q-value = 0.0003 and IV-AC q < 0.0001), corticosterone (IV-ASA q = 0.0202 and IV-AC q < 0.0001), and glycochenodeoxycholic acid (IV-ASA q = 0.0375 and IV-AC q = 0.0013). In the IV-ASA experiment, ghrelin infusion increased levels of cortisone (q = 0.0352) and fatty acids 18:1 (q = 0.0406) and 18:3 (q = 0.0320). Moreover, in the IV-AC experiment, ghrelin infusion significantly increased levels of glycocholic acid (q < 0.0001) and phenylalanine (q = 0.0458). CONCLUSION: IV ghrelin infusion, combined with IV alcohol administration, was associated with increases in the circulating metabolite levels of corticosteroids and glycine-conjugated bile acids, among other changes. Further research is needed to understand the role that metabolomic changes play in the complex interaction between ghrelin and alcohol.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/tratamento farmacológico , Estimulantes do Sistema Nervoso Central/administração & dosagem , Fissura/efeitos dos fármacos , Grelina/administração & dosagem , Adulto , Consumo de Bebidas Alcoólicas/terapia , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Etanol , Humanos , Infusões Intravenosas , Masculino
8.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100386

RESUMO

The omega-3 fatty acid docosahexaenoic acid (DHA) inversely relates to neurological impairments with aging; however, limited nondietary models manipulating brain DHA have hindered a direct linkage. We discovered that loss of long-chain acyl-CoA synthetase 6 in mice (Acsl6-/-) depletes brain membrane phospholipid DHA levels, independent of diet. Here, Acsl6-/- brains contained lower DHA compared with controls across the life span. The loss of DHA- and increased arachidonate-enriched phospholipids were visualized by MALDI imaging predominantly in neuron-rich regions where single-molecule RNA in situ hybridization localized Acsl6 to neurons. ACSL6 is also astrocytic; however, we found that astrocyte-specific ACSL6 depletion did not alter membrane DHA because astrocytes express a non-DHA-preferring ACSL6 variant. Across the life span, Acsl6-/- mice exhibited hyperlocomotion, impairments in working spatial memory, and increased cholesterol biosynthesis genes. Aging caused Acsl6-/- brains to decrease the expression of membrane, bioenergetic, ribosomal, and synaptic genes and increase the expression of immune response genes. With age, the Acsl6-/- cerebellum became inflamed and gliotic. Together, our findings suggest that ACSL6 promotes membrane DHA enrichment in neurons, but not in astrocytes, and is important for neuronal DHA levels across the life span. The loss of ACSL6 impacts motor function, memory, and age-related neuroinflammation, reflecting the importance of neuronal ACSL6-mediated lipid metabolism across the life span.


Assuntos
Envelhecimento/genética , Encéfalo/metabolismo , Coenzima A Ligases/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Neuroproteção/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Encéfalo/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Colesterol/biossíntese , Coenzima A Ligases/metabolismo , Expressão Gênica , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Locomoção/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Doenças Neuroinflamatórias/metabolismo , Memória Espacial/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Neurobiol Stress ; 14: 100325, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997152

RESUMO

Although opioids are potent analgesics, a consequence of chronic opioid use is hyperalgesia during withdrawal, which may contribute to opioid misuse. Dynorphin, the endogenous ligand of κ-opioid receptors (KORs), is upregulated in opioid-dependent rats and in animal models of chronic pain. However, the role of KORs in opioid withdrawal-induced hyperalgesia remains to be determined. We hypothesized that KOR antagonism would reverse opioid withdrawal-induced hyperalgesia in opioid-dependent rats. Male and female Wistar rats received daily injections of heroin (2-6 mg/kg, SC) and were tested for mechanical sensitivity in the electronic von Frey test 4-6 h into withdrawal. Female rats required significantly more heroin than male rats to reach comparable levels of both heroin-induced analgesia and hyperalgesia (6 mg/kg vs. 2 mg/kg). Once hyperalgesia was established, we tested the effects of the KOR antagonists nor-binaltorphimine (norBNI; 30 mg/kg, SC) and 5'-guanidinonaltrindole (5'GNTI; 30 mg/kg, SC). When the animals continued to receive their daily heroin treatment (or saline treatment in the repeated saline group) five times per week throughout the experiment, both KOR antagonists reversed heroin withdrawal-induced hyperalgesia. The anti-hyperalgesia effect of norBNI was more prolonged in males than in females (14 days vs. 7 days), whereas 5'GNTI had more prolonged effects in females than in males (14 days vs. 4 days). The behavioral effects of 5'GNTI coincided with higher 5'GNTI levels in the brain than in plasma when measured at 24 h, whereas 5'GNTI did not reverse hyperalgesia at 30 min posttreatment when 5'GNTI levels were higher in plasma than in the brain. Finally, we tested the effects of 5'GNTI on naloxone-induced and spontaneous signs of opioid withdrawal and found no effect in either male or female rats. These findings indicate a functional role for KORs in heroin withdrawal-induced hyperalgesia that is observed in rats of both sexes.

10.
Anal Chem ; 92(20): 13667-13671, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32902263

RESUMO

We developed a method to directly detect and map the Gram-negative bacterial virulence factor lipid A derived from lipopolysaccharide (LPS) by coupling acid hydrolysis with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). As the structure of lipid A (endotoxin) determines the innate immune outcome during infection, the ability to map its location within an infected organ or animal is needed to understand localized inflammatory responses that results during host-pathogen interactions. We previously demonstrated detection of free lipid A from infected tissue; however detection of lipid A derived from intact (smooth) LPS from host-pathogen MSI studies, proved elusive. Here, we detected LPS-derived lipid A from the Gram-negative pathogens, Escherichia coli (Ec, m/z 1797) and Pseudomonas aeruginosa (Pa, m/z 1446) using on-tissue acid hydrolysis to cleave the glycosidic linkage between the polysaccharide (core and O-antigen) and lipid A moieties of LPS. Using accurate mass methods, the ion corresponding to the major Ec and Pa lipid A species (m/z 1797 and 1446, respectively) were unambiguously discriminated from complex tissue substrates. Further, we evaluated potential delocalization and signal loss of other tissue lipids and found no evidence for either, making this LPS-to-Lipid A-MSI (LLA-MSI) method, compatible with simultaneous host-pathogen lipid imaging following acid hydrolysis. This spatially sensitive technique is the first step in mapping host-influenced de novo lipid A modifications, such as those associated with antimicrobial resistance phenotypes, during Gram-negative bacterial infection and will advance our understanding of the host-pathogen interface.


Assuntos
Lipídeo A/análise , Lipopolissacarídeos/metabolismo , Animais , Escherichia coli/metabolismo , Rim/microbiologia , Limite de Detecção , Camundongos , Pseudomonas aeruginosa/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
J Am Soc Mass Spectrom ; 31(12): 2495-2502, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32924474

RESUMO

Cardiolipins (CLs) are an important, regulated lipid class both in prokaryotic and eukaryotic cells, yet they remain largely unexplored by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in tissues. To date, no in-depth optimization studies of label-free visualization of CLs in complex biological samples have been reported. Here we report a streamlined modification to our previously reported MALDI-MSI method for detection of endogenous CLs in prokaryotic and eukaryotic cells based on preparation with norharmane (NRM) matrix. Notably, the use of NRM matrix permitted sensitive detection (4.7 pg/mm2) of spotted CL synthetic standards. By contrast, four other MALDI matrices commonly used for lipid analysis failed to generate CL ions. Using this NRM-based method, endogenous CLs were detected from two types of complex biological samples: dried bacterial arrays and mouse tissue sections. In both cases, using NRM resulted in a better signal/noise for CL ions than the other matrices. Furthermore, inclusion of a washing step improved CL detection from tissue and this combined tissue preparation method (washing and NRM matrix) was used to profile normal mouse lung. Mouse lung yielded 26 unique CLs that were mapped and identified. Consistent with previous findings, CLs containing polyunsaturated fatty acids (PUFAs) were found in abundance in the airway and vascular features of the lung. This work represents a comprehensive investigation of detection conditions for CL using MALDI-MSI in complex biological samples that resulted in a streamlined method that enables future studies of the biological role(s) of CL in tissue.


Assuntos
Cardiolipinas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bactérias/química , Carbolinas/química , Camundongos
12.
Sci Rep ; 10(1): 833, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964994

RESUMO

While it is known that opioid receptors (ORs) are densely expressed in both the brain and periphery, it is widely accepted that hypoxic effects of opioids result solely from their direct action in the CNS. To examine the role of peripheral ORs in triggering brain hypoxia, we used oxygen sensors in freely moving rats to examine how naloxone-HCl and naloxone-methiodide, the latter which is commonly believed to be peripherally restricted, affect brain oxygen responses induced by intravenous heroin at low, human-relevant doses. Similar to naloxone-HCl, naloxone-methiodide at a relatively low dose (2 mg/kg) fully blocked heroin-induced decreases in brain oxygen levels. As measured by mass spectrometry, naloxone-methiodide was found to be ~40-fold less permeable than naloxone-HCl across the blood-brain barrier, thus acting as a selective blocker of peripheral ORs. Despite this selectivity, a low but detectable amount of naloxone was found in brain tissue after naloxone-methiodide administration, potentially influencing our results. Therefore, we examined the effects of naloxone-methiodide at a very low dose (0.2 mg/kg; at which naloxone was undetectable in brain tissue) and found that this drug still powerfully attenuates heroin-induced brain oxygen responses. These data demonstrate the role of peripheral ORs in triggering heroin-induced respiratory depression and subsequent brain hypoxia.


Assuntos
Heroína/efeitos adversos , Hipóxia Encefálica/etiologia , Receptores Opioides/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Hipóxia Encefálica/tratamento farmacológico , Naloxona/administração & dosagem , Naloxona/análogos & derivados , Naloxona/metabolismo , Naloxona/farmacologia , Oxigênio/metabolismo , Compostos de Amônio Quaternário/administração & dosagem , Compostos de Amônio Quaternário/metabolismo , Compostos de Amônio Quaternário/farmacologia , Ratos , Receptores Opioides/metabolismo
13.
Elife ; 82019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31596232

RESUMO

Cocaine is an addictive drug that acts in brain reward areas. Recent evidence suggests that cocaine stimulates synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) in midbrain, increasing dopamine neuron activity via disinhibition. Although a mechanism for cocaine-stimulated 2-AG synthesis is known, our understanding of 2-AG release is limited. In NG108 cells and mouse midbrain tissue, we find that 2-AG is localized in non-synaptic extracellular vesicles (EVs) that are secreted in the presence of cocaine via interaction with the chaperone protein sigma-1 receptor (Sig-1R). The release of EVs occurs when cocaine causes dissociation of the Sig-1R from ADP-ribosylation factor (ARF6), a G-protein regulating EV trafficking, leading to activation of myosin light chain kinase (MLCK). Blockade of Sig-1R function, or inhibition of ARF6 or MLCK also prevented cocaine-induced EV release and cocaine-stimulated 2-AG-modulation of inhibitory synapses in DA neurons. Our results implicate the Sig-1R-ARF6 complex in control of EV release and demonstrate that cocaine-mediated 2-AG release can occur via EVs.


Assuntos
Cocaína/farmacologia , Endocanabinoides/metabolismo , Vesículas Extracelulares/metabolismo , Receptores sigma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Camundongos , Quinase de Cadeia Leve de Miosina/metabolismo , Receptor Sigma-1
14.
J Biol Chem ; 294(39): 14394-14405, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399511

RESUMO

Docosahexaenoic acid (DHA) is an ω-3 dietary-derived polyunsaturated fatty acid of marine origin enriched in testes and necessary for normal fertility, yet the mechanisms regulating the enrichment of DHA in the testes remain unclear. Long-chain ACSL6 (acyl-CoA synthetase isoform 6) activates fatty acids for cellular anabolic and catabolic metabolism by ligating a CoA to a fatty acid, is highly expressed in testes, and has high preference for DHA. Here, we investigated the role of ACSL6 for DHA enrichment in the testes and its requirement for male fertility. Acsl6-/- males were severely subfertile with smaller testes, reduced cauda epididymal sperm counts, germ cell loss, and disorganization of the seminiferous epithelium. Total fatty acid profiling of Acsl6-/- testes revealed reduced DHA and increased ω-6 arachidonic acid, a fatty acid profile also reflected in phospholipid composition. Strikingly, lipid imaging demonstrated spatial redistribution of phospholipids in Acsl6-/- testes. Arachidonic acid-containing phospholipids were predominantly interstitial in control testes but diffusely localized across Acsl6-/- testes. In control testes, DHA-containing phospholipids were predominantly within seminiferous tubules, which contain Sertoli cells and spermatogenic cells but relocalized to the interstitium in Acsl6-/- testes. Taken together, these data demonstrate that ACSL6 is an initial driving force for germ cell DHA enrichment and is required for normal spermatogenesis and male fertility.


Assuntos
Coenzima A Ligases/genética , Ácidos Graxos Ômega-6/metabolismo , Infertilidade Masculina/genética , Túbulos Seminíferos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeos/metabolismo , Túbulos Seminíferos/citologia , Espermatogênese
15.
J Am Soc Mass Spectrom ; 30(7): 1199-1203, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30949967

RESUMO

In this paper, drug-drug chemical interactions between two different aromatic compounds were studied by mass spectrometry. Specifically, we examined non-covalent complexes (NCX) between paclitaxel, a chemotherapeutic compound, and medications widely used in palliative care for depression, psychosis, and anxiety. It is unknown whether psychotropic medications directly interact with paclitaxel. Here, we use a simple and rapid electrospray ionization mass spectrometry in vitro assay, which has been predictive in the case of neuropeptides, to measure the relative strength of non-covalent interactions. This chemical interaction is most likely due to the overlap of aromatic rings of π-orbitals between paclitaxel and five commonly used medications: diazepam, clonozepam, sertraline, fluoxetine, and haloperidol. Molecular modeling illustrates that differences in the stability of the NCXs are likely due to the distance between the aromatic rings present in both the paclitaxel and antidepressant medications. Graphical Abstract.


Assuntos
Ansiolíticos/química , Antidepressivos/química , Antineoplásicos Fitogênicos/química , Paclitaxel/química , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Sítios de Ligação , Diazepam/química , Diazepam/farmacologia , Interações Medicamentosas , Fluoxetina/química , Fluoxetina/farmacologia , Haloperidol/química , Haloperidol/farmacologia , Humanos , Modelos Moleculares , Paclitaxel/farmacologia , Sertralina/química , Sertralina/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos
16.
Eur J Mass Spectrom (Chichester) ; 25(2): 212-218, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31018697

RESUMO

Electrostatic interactions are one of the main factors influencing biomolecular conformation. The formation of noncovalent complexes by electrostatic interactions is governed by certain amino acid residues and post-translational modifications. It has been demonstrated that adjacent arginine forms noncovalent complex with phosphate; however, histidine noncovalent complexes have rarely been investigated. In the present work, we compare the interaction between basic epitopes (NLRRITRVN, SHHGLHSTPD) and diverse acidic and aromatic-rich peptides using both MALDI and ESI Mass spectrometry. We show that adjacent histidines can also form stable noncovalent bonds and that those bonds are probably formed by a salt bridge between the phosphate or the acid residues and the histidines. However, noncovalent complexes with the arginine epitopes form more readily and are stronger than those with histidine-containing epitopes.


Assuntos
Arginina/química , Histidina/química , Conformação Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletricidade Estática
17.
Sci Rep ; 8(1): 10219, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29977031

RESUMO

Schnyder corneal dystrophy (SCD) is a rare autosomal dominant disease in humans, characterized by abnormal deposition of cholesterol and phospholipids in cornea caused by mutations in the UbiA prenyltransferase domain containing 1 (UBIAD1) gene. In this study, we generated a mouse line carrying Ubiad1 N100S point mutation using the CRISPR/Cas9 technique to investigate the pathogenesis of SCD. In vivo confocal microscopy revealed hyper-reflective dot-like deposits in the anterior cornea in heterozygotes and homozygotes. No significant change was found in corneal epithelial barrier function or wound healing. Electron microscopy revealed abnormal mitochondrial morphology in corneal epithelial, stromal, and endothelial cells. Mitochondrial DNA copy number assay showed 1.27 ± 0.07 fold change in homozygotes versus 0.98 ± 0.05 variation in wild type mice (P < 0.05). Lipidomic analysis indicated abnormal metabolism of glycerophosphoglycerols, a lipid class found in mitochondria. Four (34:1, 34:2, 36:2, and 44:8) of the 11 glycerophosphoglycerols species identified by mass spectrometry showed a significant increase in homozygous corneas compared with heterozygous and wild-type mouse corneas. Unexpectedly, we did not find a difference in the corneal cholesterol level between different genotypes by filipin staining or lipidomic analysis. The Ubiad1N100S mouse provides a promising animal model of SCD revealing that mitochondrial dysfunction is a prominent component of the disease. The different phenotype in human and mouse may due to difference in cholesterol metabolism between species.


Assuntos
Córnea/diagnóstico por imagem , Distrofias Hereditárias da Córnea/diagnóstico por imagem , Dimetilaliltranstransferase/genética , Modelos Animais de Doenças , Animais , Sistemas CRISPR-Cas , Córnea/metabolismo , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/metabolismo , Glicerofosfatos/metabolismo , Humanos , Masculino , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação Puntual
18.
J Lipid Res ; 59(9): 1586-1596, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986998

RESUMO

Long-chain PUFAs (LC-PUFAs; C20-C22; e.g., DHA and arachidonic acid) are highly enriched in vertebrate retina, where they are elongated to very-long-chain PUFAs (VLC-PUFAs; C 28) by the elongation of very-long-chain fatty acids-4 (ELOVL4) enzyme. These fatty acids play essential roles in modulating neuronal function and health. The relevance of different lipid requirements in rods and cones to disease processes, such as age-related macular degeneration, however, remains unclear. To better understand the role of LC-PUFAs and VLC-PUFAs in the retina, we investigated the lipid compositions of whole retinas or photoreceptor outer segment (OS) membranes in rodents with rod- or cone-dominant retinas. We analyzed fatty acid methyl esters and the molecular species of glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) by GC-MS/GC-flame ionization detection and ESI-MS/MS, respectively. We found that whole retinas and OS membranes in rod-dominant animals compared with cone-dominant animals had higher amounts of LC-PUFAs and VLC-PUFAs. Compared with those of rod-dominant animals, retinas and OS membranes from cone-dominant animals also had about 2-fold lower levels of di-DHA (22:6/22:6) molecular species of glycerophospholipids. Because PUFAs are necessary for optimal G protein-coupled receptor signaling in rods, these findings suggest that cones may not have the same lipid requirements as rods.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/química , Glicerofosfolipídeos/metabolismo , Camundongos
19.
Arterioscler Thromb Vasc Biol ; 38(7): 1504-1518, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29853567

RESUMO

OBJECTIVE: Cells use various mechanisms to maintain cellular cholesterol homeostasis including efflux of cholesterol from the cellular plasma membrane to cholesterol acceptors such as HDLs (high-density lipoproteins). Little is known about the transfer of cholesterol from cells into the extracellular matrix. Using a unique monoclonal antibody that detects ordered cholesterol arrays (ie, cholesterol micro[or nano]-domains), we previously identified that particles containing these cholesterol domains accumulate in the extracellular matrix during cholesterol enrichment of human monocyte-derived macrophages and are found in atherosclerotic lesions. In this study, we further investigate these deposited particles containing cholesterol microdomains and discover their unexpected morphology. APPROACH AND RESULTS: Although appearing spherical at the resolution of the conventional fluorescence microscope, super-resolution immunofluorescence and atomic force microscopy of in situ cholesterol microdomains, and immunoelectron microscopy of isolated cholesterol microdomains revealed that the microdomains are not vesicles or 3-dimensional crystals but rather appear as branching irregularly shaped deposits of varying size. These cholesterol microdomain-containing deposits are shed from the plasma membrane into the extracellular matrix. CONCLUSIONS: To date, research on cellular excretion of excess cholesterol has demonstrated cellular cholesterol efflux in the form of membranous vesicles and discoidal HDL particles released into the fluid-phase medium. Shedding of plasma membrane cholesterol microdomains provides an additional mechanism for cells such as macrophages to maintain plasma membrane cholesterol homeostasis. Furthermore, recognition that macrophages shed cholesterol microdomains into the extracellular matrix is important to our understanding of extracellular buildup of cholesterol in atherosclerosis.


Assuntos
Colesterol/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Células Cultivadas , Matriz Extracelular/ultraestrutura , Humanos , Macrófagos/ultraestrutura , Masculino , Microdomínios da Membrana/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Microscopia de Força Atômica , Microscopia Eletroquímica de Varredura , Microscopia de Fluorescência
20.
J Am Soc Mass Spectrom ; 29(7): 1463-1472, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29549666

RESUMO

Matrix-assisted laser/desorption ionization (MALDI) mass spectrometry imaging (MSI) is widely used as a unique tool to record the distribution of a large range of biomolecules in tissues. 2,6-Dihydroxyacetophenone (DHA) matrix has been shown to provide efficient ionization of lipids, especially gangliosides. The major drawback for DHA as it applies to MS imaging is that it sublimes under vacuum (low pressure) at the extended time necessary to complete both high spatial and mass resolution MSI studies of whole organs. To overcome the problem of sublimation, we used an atmospheric pressure (AP)-MALDI source to obtain high spatial resolution images of lipids in the brain using a high mass resolution mass spectrometer. Additionally, the advantages of atmospheric pressure and DHA for imaging gangliosides are highlighted. The imaging of [M-H]- and [M-H2O-H]- mass peaks for GD1 gangliosides showed different distribution, most likely reflecting the different spatial distribution of GD1a and GD1b species in the brain. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA