Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Hepatol Commun ; 8(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696369

RESUMO

BACKGROUND: Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS: Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS: In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS: Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.


Assuntos
Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hepatócitos , Animais , Camundongos , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , RNA Interferente Pequeno/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Camundongos Endogâmicos C57BL
2.
Biology (Basel) ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785798

RESUMO

Escherichia coli (E. coli) is a frequent gram-negative bacterium that causes nosocomial infections, affecting more than 100 million patients annually worldwide. Bacterial lipopolysaccharide (LPS) from E. coli binds to toll-like receptor 4 (TLR4) and its co-receptor's cluster of differentiation protein 14 (CD14) and myeloid differentiation factor 2 (MD2), collectively known as the LPS receptor complex. LPCAT2 participates in lipid-raft assembly by phospholipid remodelling. Previous research has proven that LPCAT2 co-localises in lipid rafts with TLR4 and regulates macrophage inflammatory response. However, no published evidence exists of the influence of LPCAT2 on the gene expression of the LPS receptor complex induced by smooth or rough bacterial serotypes. We used RAW264.7-a commonly used experimental murine macrophage model-to study the effects of LPCAT2 on the LPS receptor complex by transiently silencing the LPCAT2 gene, infecting the macrophages with either smooth or rough LPS, and quantifying gene expression. LPCAT2 only significantly affected the gene expression of the LPS receptor complex in macrophages infected with smooth LPS. This study provides novel evidence that the influence of LPCAT2 on macrophage inflammatory response to bacterial infection depends on the LPS serotype, and it supports previous evidence that LPCAT2 regulates inflammatory response by modulating protein translocation to lipid rafts.

3.
Z Naturforsch C J Biosci ; 79(3-4): 47-60, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549398

RESUMO

Garcinia mangostana fruits are used traditionally for inflammatory skin conditions, including acne. In this study, an in silico approach was employed to predict the interactions of G. mangostana xanthones and benzophenones with three proteins involved in the pathogenicity of acne, namely the human JNK1, Cutibacterium acnes KAS III and exo-ß-1,4-mannosidase. Molecular docking analysis was performed using Autodock Vina. The highest docking scores and size-independent ligand efficiency values towards JNK1, C. acnes KAS III and exo-ß-1,4-mannosidase were obtained for garcinoxanthone T, gentisein/2,4,6,3',5'-pentahydroxybenzophenone and mangostanaxanthone VI, respectively. To the best of our knowledge, this is the first report of the potential of xanthones and benzophenones to interact with C. acnes KAS III. Molecular dynamics simulations using GROMACS indicated that the JNK1-garcinoxanthone T complex had the highest stability of all ligand-protein complexes, with a high number of hydrogen bonds predicted to form between this ligand and its target. Petra/Osiris/Molinspiration (POM) analysis was also conducted to determine pharmacophore sites and predict the molecular properties of ligands influencing ADMET. All ligands, except for mangostanaxanthone VI, showed good membrane permeability. Garcinoxanthone T, gentisein and 2,4,6,3',5'-pentahydroxybenzophenone were identified as the most promising compounds to explore further, including in experimental studies, for their anti-acne potential.


Assuntos
Acne Vulgar , Benzofenonas , Garcinia mangostana , Simulação de Acoplamento Molecular , Xantonas , Xantonas/química , Xantonas/farmacologia , Benzofenonas/química , Benzofenonas/farmacologia , Garcinia mangostana/química , Humanos , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Simulação de Dinâmica Molecular , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/química , Simulação por Computador , Ligação de Hidrogênio
4.
Curr Opin Microbiol ; 78: 102433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350268

RESUMO

Our ability to control the growth of Gram-negative bacterial pathogens is challenged by rising antimicrobial resistance and requires new approaches. Endolysins are phage-derived enzymes that degrade peptidoglycan and therefore offer potential as antimicrobial agents. However, the outer membrane (OM) of Gram-negative bacteria impedes the access of externally applied endolysins to peptidoglycan. This review highlights recent advances in the discovery and characterization of natural endolysins that can breach the OM, as well as chemical and engineering approaches that increase antimicrobial efficacy of endolysins against Gram-negative pathogens.


Assuntos
Anti-Infecciosos , Bacteriófagos , Antibacterianos/química , Peptidoglicano/metabolismo , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química , Anti-Infecciosos/metabolismo , Bactérias Gram-Negativas/metabolismo , Bacteriófagos/metabolismo
5.
Appl Environ Microbiol ; 90(3): e0184623, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38319087

RESUMO

Horticultural diseases caused by bacterial pathogens provide an obstacle to crop production globally. Management of the infection of kiwifruit by the Gram-negative phytopathogen Pseudomonas syringae pv. actinidiae (Psa) currently includes copper and antibiotics. However, the emergence of bacterial resistance and a changing regulatory landscape are providing the impetus to develop environmentally sustainable antimicrobials. One potential strategy is the use of bacteriophage endolysins, which degrade peptidoglycan during normal phage replication, causing cell lysis and the release of new viral progeny. Exogenous use of endolysins as antimicrobials is impaired by the outer membrane of Gram-negative bacteria that provides an impermeable barrier and prevents endolysins from accessing their target peptidoglycan. Here, we describe the synergy between citric acid and a phage endolysin, which results in a reduction of viable Psa below detection. We show that citric acid drives the destabilization of the outer membrane via acidification and sequestration of divalent cations from the lipopolysaccharide, which is followed by the degradation of the peptidoglycan by the endolysin. Scanning electron microscopy revealed clear morphological differences, indicating cell lysis following the endolysin-citric acid treatment. These results show the potential for citric acid-endolysin combinations as a possible antimicrobial approach in agricultural applications. IMPORTANCE: The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) causes major impacts to kiwifruit horticulture, and the current control strategies are heavily reliant on copper and antibiotics. The environmental impact and increasing resistance to these agrichemicals are driving interest in alternative antimicrobials including bacteriophage-derived therapies. In this study, we characterize the endolysin from the Otagovirus Psa374 which infects Psa. When combined with citric acid, this endolysin displays an impressive antibacterial synergy to reduce viable Psa below the limit of detection. The use of citric acid as a synergistic agent with endolysins has not been extensively studied and has never been evaluated against a plant pathogen. We determined that the synergy involved a combination of the chelation activity of citric acid, acidic pH, and the specific activity of the ΦPsa374 endolysin. Our study highlights an exciting opportunity for alternative antimicrobials in agriculture.


Assuntos
Actinidia , Bacteriófagos , Endopeptidases , Pseudomonas syringae , Cobre , Peptidoglicano , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Antibacterianos/farmacologia , Actinidia/microbiologia
6.
Microbiol Resour Announc ; 12(12): e0090423, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38009928

RESUMO

Myxococcus xanthus is the best-studied member of the phylum Myxococcota, but the bacteriophages infecting it and their characterization remain limited. Here, we present complete genomes of Mx1, the first Myxococcus phage isolated, and of an Mx4 derivative widely used for generalized transduction, both unclassified Caudoviricetes with long, contractile tails.

8.
BJPsych Open ; 9(4): e120, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403494

RESUMO

BACKGROUND: Poor air quality is associated with poor health. Little attention is given to the complex array of environmental exposures and air pollutants that affect mental health during the life course. AIMS: We gather interdisciplinary expertise and knowledge across the air pollution and mental health fields. We seek to propose future research priorities and how to address them. METHOD: Through a rapid narrative review, we summarise the key scientific findings, knowledge gaps and methodological challenges. RESULTS: There is emerging evidence of associations between poor air quality, both indoors and outdoors, and poor mental health more generally, as well as specific mental disorders. Furthermore, pre-existing long-term conditions appear to deteriorate, requiring more healthcare. Evidence of critical periods for exposure among children and adolescents highlights the need for more longitudinal data as the basis of early preventive actions and policies. Particulate matter, including bioaerosols, are implicated, but form part of a complex exposome influenced by geography, deprivation, socioeconomic conditions and biological and individual vulnerabilities. Critical knowledge gaps need to be addressed to design interventions for mitigation and prevention, reflecting ever-changing sources of air pollution. The evidence base can inform and motivate multi-sector and interdisciplinary efforts of researchers, practitioners, policy makers, industry, community groups and campaigners to take informed action. CONCLUSIONS: There are knowledge gaps and a need for more research, for example, around bioaerosols exposure, indoor and outdoor pollution, urban design and impact on mental health over the life course.

9.
Nat Commun ; 14(1): 847, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792607

RESUMO

Genome wide association studies for coronary artery disease (CAD) have identified a risk locus at 11q22.3. Here, we verify with mechanistic studies that rs2019090 and PDGFD represent the functional variant and gene at this locus. Further, FOXC1/C2 transcription factor binding at rs2019090 is shown to promote PDGFD transcription through the CAD promoting allele. With single cell transcriptomic and histology studies with Pdgfd knockdown in an SMC lineage tracing male atherosclerosis mouse model we find that Pdgfd promotes expansion, migration, and transition of SMC lineage cells to the chondromyocyte phenotype. Pdgfd also increases adventitial fibroblast and pericyte expression of chemokines and leukocyte adhesion molecules, which is linked to plaque macrophage recruitment. Despite these changes there is no effect of Pdgfd deletion on overall plaque burden. These findings suggest that PDGFD mediates CAD risk by promoting deleterious phenotypic changes in SMC, along with an inflammatory response that is primarily focused in the adventitia.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Animais , Masculino , Camundongos , Alelos , Aterosclerose/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Estudo de Associação Genômica Ampla , Ligação Proteica
10.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747745

RESUMO

Platelet derived growth factor (PDGF) signaling has been extensively studied in the context of vascular disease, but the genetics of this pathway remain to be established. Genome wide association studies (GWAS) for coronary artery disease (CAD) have identified a risk locus at 11q22.3, and we have verified with fine mapping approaches that the regulatory variant rs2019090 and PDGFD represent the functional variant and putative functional gene. Further, FOXC1/C2 transcription factor (TF) binding at rs2019090 was found to promote PDGFD transcription through the CAD promoting allele. Employing a constitutive Pdgfd knockout allele along with SMC lineage tracing in a male atherosclerosis mouse model we mapped single cell transcriptomic, cell state, and lesion anatomical changes associated with gene loss. These studies revealed that Pdgfd promotes expansion, migration, and transition of SMC lineage cells to the chondromyocyte phenotype and vascular calcification. This is in contrast to protective CAD genes TCF21, ZEB2, and SMAD3 which we have shown to promote the fibroblast-like cell transition or perturb the pattern or extent of transition to the chondromyocyte phenotype. Further, Pdgfd expressing fibroblasts and pericytes exhibited greater expression of chemokines and leukocyte adhesion molecules, consistent with observed increased macrophage recruitment to the plaque. Despite these changes there was no effect of Pdgfd deletion on SMC contribution to the fibrous cap or overall lesion burden. These findings suggest that PDGFD mediates CAD risk through promoting SMC expansion and migration, in conjunction with deleterious phenotypic changes, and through promoting an inflammatory response that is primarily focused in the adventitia where it contributes to leukocyte trafficking to the diseased vessel wall.

11.
J Anim Ecol ; 92(2): 297-309, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35978494

RESUMO

Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species' responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress. We: (a) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; (b) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or nonlinear trend; (c) tested which annual climatic conditions correlated with increased FA in bumblebees. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a nonlinear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards improving our understanding of how environmental factors could impact future populations of wild beneficial insects.


Assuntos
Mudança Climática , Museus , Animais , Abelhas
12.
Artigo em Inglês | MEDLINE | ID: mdl-36554408

RESUMO

BACKGROUND: Water quality testing is vital to protect human health. Current testing relies mainly on culture-based detection of faecal indicator organisms such as Escherichia coli (E.coli). However, bacterial cultures are a slow process, taking 24-48 h and requiring specialised laboratories and trained personnel. Access to such laboratories is often sparse in developing countries and there are many fatalities deriving from poor water quality. Endotoxin is a molecular component of Gram-negative bacterial cell walls and can be used to detect their presence in drinking water. METHOD: The current study used a novel assay (BacterisK) to rapidly detect endotoxin in various water samples and correlate the results with E. coli content measured by culture methods. The data generated by the BacterisK assay are presented as an 'endotoxin risk' (ER). RESULTS: The ER values correlate with E. coli and thus endotoxin can be used as a marker of faecal contamination in water. Moreover, the BacterisK assay provides data in near real-time and can be used in situ allowing water quality testing at different spatial and temporal locations. CONCLUSION: We suggest that BacterisK can be used as a convenient risk assessment tool to assess water quality where results are required quickly or access to laboratories is lacking.


Assuntos
Endotoxinas , Qualidade da Água , Humanos , Endotoxinas/análise , Escherichia coli , Fezes/microbiologia , Bioensaio , Microbiologia da Água
13.
ACS Omega ; 7(47): 42783-42792, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467951

RESUMO

Cannabis vaping involves the vaporization of a cannabis vaping liquid or solid via a vaping accessory such as a vape pen constructed of various metals or other parts. An increasing number of reports advocate for expansion of the testing and regulation of metal contaminants in cannabis vape liquids beyond the metals typically tested such as arsenic, cadmium, mercury, and lead to reflect the possibility of consumers' exposure to other metal contaminants. Metal contaminants may originate not only from the cannabis itself but also from the vape devices in which the cannabis vape liquid is packaged. However, metal analyses of cannabis vape liquids sampled from cannabis vaping devices are challenged by poor precision and reproducibility. Herein, we present data on the metal content of 12 metals in 20 legal and 21 illegal cannabis vape liquids. The lead mass fraction in several illegal samples reached up to 50 µg g-1. High levels of nickel (max 677 µg g-1) and zinc (max 426 µg g-1) were found in illegal samples, whereas the highest copper content (485 µg g-1) was measured in legal samples. Significant differences in metal mass fractions were observed in the legal cannabis vape liquid taken from two identical devices, even though the liquid was from the same lot of the same cannabis product. Metal particles in the vape liquids were observed by scanning electron microscopy, and laser ablation inductively coupled plasma mass spectrometry confirmed the presence of copper-, zinc-, lead-, and manganese-bearing particles, metals that are in common alloys that may be used to make vape devices. Colocalized particles containing aluminum, silica, and sodium were also detected. These results suggest that metal particles could be a contributing factor to poor measurement precision and for the first time, to the best of our knowledge, provide evidence of metal particles in cannabis vape liquids contained in unused cannabis vape pens.

14.
Emerg Top Life Sci ; 6(4): 411-422, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453919

RESUMO

Micro and nanosize plastic polymers degrading from large plastic compounds are accumulating in the natural environment and expose potential biological threats to human health. These particles are largely persistent and consequently accumulate in the exposed individuals. The presence of microplastics has already been demonstrated in various human organs including the lung, the gastrointestinal system and the blood raising concerns about their possible harmful effects. The chemical composition, size and shape of microplastics as well as their weathering status represent important factors influencing the potential impact of microplastics on tissues. In addition, microplastics can function as vectors for adsorbed chemical compounds and may harbour and deliver live microbial pathogens or their ligands. In vitro and in vivo animal studies demonstrated that microplastics are taken up to cells in a size and cell type dependent manner. Once inside the targeted cell they activate oxidative processes, mitochondrial dysfunction and ER-stress. These molecular processes result in the activation or repression of cell type specific functions and potentially in the induction of cytotoxicity. The microplastic elicited events may result in inflammation, organ damage and fibrosis of the targeted organs as well as in systemic immunological and metabolic conditions. In addition, microplastics may impact on the gut microbiota which may exert further gastrointestinal and systemic metabolic and immunological effects. In this minireview, we evaluate the factors and mechanisms that influence potential microplastic induced cellular and organ pathologies in humans and discuss limitations of current understanding regarding microplastic elicited conditions as well as future perspectives for research.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Animais , Humanos , Microplásticos/toxicidade , Plásticos , Trato Gastrointestinal , Meio Ambiente
15.
Mol Cell ; 82(23): 4471-4486.e9, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395770

RESUMO

Bacteria have diverse defenses against phages. In response, jumbo phages evade multiple DNA-targeting defenses by protecting their DNA inside a nucleus-like structure. We previously demonstrated that RNA-targeting type III CRISPR-Cas systems provide jumbo phage immunity by recognizing viral mRNA exported from the nucleus for translation. Here, we demonstrate that recognition of phage mRNA by the type III system activates a cyclic triadenylate-dependent accessory nuclease, NucC. Although unable to access phage DNA in the nucleus, NucC degrades the bacterial chromosome, triggers cell death, and disrupts phage replication and maturation. Hence, type-III-mediated jumbo phage immunity occurs via abortive infection, with suppression of the viral epidemic protecting the population. We further show that type III systems targeting jumbo phages have diverse accessory nucleases, including RNases that provide immunity. Our study demonstrates how type III CRISPR-Cas systems overcome the inaccessibility of jumbo phage DNA to provide robust immunity.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Núcleo Celular , Cromossomos Bacterianos , Endonucleases , RNA Mensageiro
16.
Metabolites ; 12(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005643

RESUMO

Vitamin D deficiency is a global disorder associated with several chronic illnesses including dyslipidemia and metabolic syndrome. The impact of this association with both dyslipidemia and vitamin D deficiency on metabolomics profile is not yet fully understood. This study analyses the metabolomics and lipidomic signatures in relation to vitamin D status and dyslipidemia. Metabolomics data were collected from Qatar Biobank database and categorized into four groups based on vitamin D and dyslipidemia status. Metabolomics multivariate analysis was performed using the orthogonal partial least square discriminate analysis (OPLS-DA) whilst linear models were used to assess the per-metabolite association with each of the four dyslipidemia/vitamin D combination groups. Our results indicate a high prevalence of vitamin D deficiency among the younger age group, while dyslipidemia was more prominent in the older group. A significant alteration of metabolomics profile was observed among the dyslipidemic and vitamin D deficient individuals in comparison with control groups. These modifications reflected changes in some key pathways including ceramides, diacylglycerols, hemosylceramides, lysophospholipids, phosphatidylcholines, phosphatidylethanol amines, and sphingomyelins. Vitamin D deficiency and dyslipidemia have a deep impact on sphingomyelins profile. The modifications were noted at the level of ceramides and are likely to propagate through downstream pathways.

17.
CRISPR J ; 5(4): 536-547, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35833800

RESUMO

Adaptation of clustered regularly interspaced short palindromic repeats (CRISPR) arrays is a crucial process responsible for the unique, adaptive nature of CRISPR-Cas immune systems. The acquisition of new CRISPR spacers from mobile genetic elements has previously been studied for several types of CRISPR-Cas systems. In this study, we used a high-throughput sequencing approach to characterize CRISPR adaptation of the type V-A system from Francisella novicida and the type V-B system from Alicyclobacillus acidoterrestris. In contrast to other class 2 CRISPR-Cas systems, we found that for the type V-A and V-B systems, the Cas12 nucleases are dispensable for spacer acquisition, with only Cas1 and Cas2 (type V-A) or Cas4/1 and Cas2 (type V-B) being necessary and sufficient. Whereas the catalytic activity of Cas4 is not essential for adaptation, Cas4 activity is required for correct protospacer adjacent motif selection in both systems and for prespacer trimming in type V-A. In addition, we provide evidence for acquisition of RecBCD-produced DNA fragments by both systems, but with spacers derived from foreign DNA being incorporated preferentially over those derived from the host chromosome. Our work shows that several spacer acquisition mechanisms are conserved between diverse CRISPR-Cas systems, but also highlights unexpected nuances between similar systems that generally contribute to a bias of gaining immunity against invading genetic elements.


Assuntos
Proteínas Associadas a CRISPR , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA , Endonucleases/genética , Edição de Genes
18.
Biosci Rep ; 42(7)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35735109

RESUMO

Inflammation is central to several diseases. TLR4 mediates inflammation by recognising and binding to bacterial lipopolysaccharides and interacting with other proteins in the TLR4 signalling pathway. Although there is extensive research on TLR4-mediated inflammation, there are gaps in understanding its mechanisms. Recently, TLR4 co-localised with LPCAT2, a lysophospholipid acetyltransferase. LPCAT2 is already known to influence lipopolysaccharide-induced inflammation; however, the mechanism of LPCAT2 influencing lipopolysaccharide-mediated inflammation is not understood. The present study combined computational analysis with biochemical analysis to investigate the influence of LPCAT2 on lysine acetylation in LPS-treated RAW264.7 cells. The results suggest for the first time that LPCAT2 influences lysine acetylation in LPS-treated RAW264.7 cells. Moreover, we detected acetylated lysine residues on TLR4. The present study lays a foundation for further research on the role of lysine acetylation on TLR4 signalling. Moreover, further research is required to characterise LPCAT2 as a protein acetyltransferase.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Lipopolissacarídeos , Receptor 4 Toll-Like/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Lisina/metabolismo , Camundongos , Células RAW 264.7 , Receptor 4 Toll-Like/genética
19.
Nucleic Acids Res ; 50(W1): W541-W550, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639517

RESUMO

Most bacteria and archaea possess multiple antiviral defence systems that protect against infection by phages, archaeal viruses and mobile genetic elements. Our understanding of the diversity of defence systems has increased greatly in the last few years, and many more systems likely await discovery. To identify defence-related genes, we recently developed the Prokaryotic Antiviral Defence LOCator (PADLOC) bioinformatics tool. To increase the accessibility of PADLOC, we describe here the PADLOC web server (freely available at https://padloc.otago.ac.nz), allowing users to analyse whole genomes, metagenomic contigs, plasmids, phages and archaeal viruses. The web server includes a more than 5-fold increase in defence system types detected (since the first release) and expanded functionality enabling detection of CRISPR arrays and retron ncRNAs. Here, we provide user information such as input options, description of the multiple outputs, limitations and considerations for interpretation of the results, and guidance for subsequent analyses. The PADLOC web server also houses a precomputed database of the defence systems in > 230,000 RefSeq genomes. These data reveal two taxa, Campylobacterota and Spriochaetota, with unusual defence system diversity and abundance. Overall, the PADLOC web server provides a convenient and accessible resource for the detection of antiviral defence systems.


Assuntos
Archaea , Bactérias , Genoma Microbiano , Genômica , Internet , Software , Archaea/genética , Archaea/virologia , Bactérias/genética , Bactérias/virologia , Bacteriófagos/imunologia , Genoma Microbiano/genética , Plasmídeos/genética , Células Procarióticas/metabolismo , Células Procarióticas/virologia , Computadores , Genômica/métodos
20.
Nucleic Acids Res ; 50(6): 3348-3361, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35286398

RESUMO

Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction-modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.


Assuntos
Bacteriófagos , Enzimas de Restrição-Modificação do DNA , Bacteriófagos/genética , Bacteriófagos/metabolismo , Metilação de DNA/genética , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Endonucleases/metabolismo , Epigênese Genética , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA