RESUMO
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Éxons , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismoRESUMO
Hyper IgM1 is an X-linked combined immunodeficiency caused by CD40LG mutations, potentially treatable with CD4+ T-cell gene editing with Cas9 and a "one-size-fits-most" corrective template. Contrary to established gene therapies, there is limited data on the genomic alterations following long-range gene editing, and no consensus on the relevant assays. We developed drop-off digital PCR assays for unbiased detection of large on-target deletions and found them at high frequency upon editing. Large deletions were also common upon editing different loci and cell types and using alternative Cas9 and template delivery methods. In CD40LG edited T cells, on-target deletions were counter-selected in culture and further purged by enrichment for edited cells using a selector coupled to gene correction. We then validated the sensitivity of optical genome mapping for unbiased detection of genome wide rearrangements and uncovered on-target trapping of one or more vector copies, which do not compromise functionality, upon editing using an integrase defective lentiviral donor template. No other recurring events were detected. Edited patient cells showed faithful reconstitution of CD40LG regulated expression and function with a satisfactory safety profile. Large deletions and donor template integrations should be anticipated and accounted for when designing and testing similar gene editing strategies.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Genoma , Linfócitos T , Linfócitos T CD4-PositivosRESUMO
Hyper-IgM1 is a rare X-linked combined immunodeficiency caused by mutations in the CD40 ligand (CD40LG) gene with a median survival of 25 years, potentially treatable with in situ CD4+ T cell gene editing with Cas9 and a one-size-fits-most corrective donor template. Here, starting from our research-grade editing protocol, we pursued the development of a good manufacturing practice (GMP)-compliant, scalable process that allows for correction, selection and expansion of edited cells, using an integrase defective lentiviral vector as donor template. After systematic optimization of reagents and conditions we proved maintenance of stem and central memory phenotypes and expression and function of CD40LG in edited healthy donor and patient cells recapitulating the physiological CD40LG regulation. We then documented the preserved fitness of edited cells by xenotransplantation into immunodeficient mice. Finally, we transitioned to large-scale manufacturing, and developed a panel of quality control assays. Overall, our GMP-compliant process takes long-range gene editing one step closer to clinical application with a reassuring safety profile.
RESUMO
Long-range gene editing by homology-directed repair (HDR) in hematopoietic stem/progenitor cells (HSPCs) often relies on viral transduction with recombinant adeno-associated viral vector (AAV) for template delivery. Here, we uncover unexpected load and prolonged persistence of AAV genomes and their fragments, which trigger sustained p53-mediated DNA damage response (DDR) upon recruiting the MRE11-RAD50-NBS1 (MRN) complex on the AAV inverted terminal repeats (ITRs). Accrual of viral DNA in cell-cycle-arrested HSPCs led to its frequent integration, predominantly in the form of transcriptionally competent ITRs, at nuclease on- and off-target sites. Optimized delivery of integrase-defective lentiviral vector (IDLV) induced lower DNA load and less persistent DDR, improving clonogenic capacity and editing efficiency in long-term repopulating HSPCs. Because insertions of viral DNA fragments are less frequent with IDLV, its choice for template delivery mitigates the adverse impact and genotoxic burden of HDR editing and should facilitate its clinical translation in HSPC gene therapy.
Assuntos
DNA Viral , Proteína Supressora de Tumor p53 , Sistemas CRISPR-Cas , Dano ao DNA , Edição de Genes , Células-Tronco Hematopoéticas , Humanos , Integrases , Proteína Supressora de Tumor p53/genéticaRESUMO
Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) is proving successful to treat several genetic diseases. HSPCs are mobilized, harvested, genetically corrected ex vivo, and infused, after the administration of toxic myeloablative conditioning to deplete the bone marrow (BM) for the modified cells. We show that mobilizers create an opportunity for seamless engraftment of exogenous cells, which effectively outcompete those mobilized, to repopulate the depleted BM. The competitive advantage results from the rescue during ex vivo culture of a detrimental impact of mobilization on HSPCs and can be further enhanced by the transient overexpression of engraftment effectors exploiting optimized mRNA-based delivery. We show the therapeutic efficacy in a mouse model of hyper IgM syndrome and further developed it in human hematochimeric mice, showing its applicability and versatility when coupled with gene transfer and editing strategies. Overall, our findings provide a potentially valuable strategy paving the way to broader and safer use of HSPC-GT.
Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Animais , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Humanos , CamundongosRESUMO
In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.
RESUMO
Large-scale manufacturing of rAAV is a bottleneck for the development of genetic disease treatments. The baculovirus/Sf9 cell system underpins the first rAAV treatment approved by EMA and remains one of the most advanced platforms for rAAV manufacturing. Despite early successes, rAAV is still a complex biomaterial to produce. Efficient production of the recombinant viral vector requires that AAV replicase and capsid genes be co-located with the recombinant AAV genome. Here, we present the Monobac system, a singular, modified baculovirus genome that contains all of these functions. To assess the relative yields between the dual baculovirus and Monobac systems, we prepared each system with a transgene encoding γSGC and evaluated vectors' potency in vivo. Our results show that rAAV production using the Monobac system not only yields higher titers of rAAV vector but also a lower amount of DNA contamination from baculovirus.
RESUMO
Gene editing by engineered nucleases has revolutionized the field of gene therapy by enabling targeted and precise modification of the genome. However, the limited availability of methods for clonal tracking of edited cells has resulted in a paucity of information on the diversity, abundance and behavior of engineered clones. Here we detail the wet laboratory and bioinformatic BAR-Seq pipeline, a strategy for clonal tracking of cells harboring homology-directed targeted integration of a barcoding cassette. We present the BAR-Seq web application, an online, freely available and easy-to-use software that allows performing clonal tracking analyses on raw sequencing data without any computational resources or advanced bioinformatic skills. BAR-Seq can be applied to most editing strategies, and we describe its use to investigate the clonal dynamics of human edited hematopoietic stem/progenitor cells in xenotransplanted hosts. Notably, BAR-Seq may be applied in both basic and translational research contexts to investigate the biology of edited cells and stringently compare editing protocols at a clonal level. Our BAR-Seq pipeline allows library preparation and validation in a few days and clonal analyses of edited cell populations in 1 week.
Assuntos
Rastreamento de Células/métodos , Células Clonais , Edição de Genes , Software , Código de Barras de DNA TaxonômicoRESUMO
Viral vectors have a great potential for gene delivery, but manufacturing is a big challenge for the industry. The baculovirus-insect cell is one of the most scalable platforms to produce recombinant adeno-associated virus (rAAV) vectors. The standard procedure to generate recombinant baculovirus is based on Tn7 transposition which is time-consuming and suffers technical constraints. Moreover, baculoviral sequences adjacent to the AAV ITRs are preferentially encapsidated into the rAAV vector particles. This observation raises concerns about safety due to the presence of bacterial and antibiotic resistance coding sequences with a Tn7-mediated system for the construction of baculoviruses reagents. Here, a faster and safer method based on homologous recombination (HR) is investigated. First, the functionality of the inserted cassette and the absence of undesirable genes into HR-derived baculoviral genomes are confirmed. Strikingly, it is found that the exogenous cassette showed increased stability over passages when using the HR system. Finally, both materials generated high rAAV vector genome titers, with the advantage of the HR system being exempted from undesirable bacterial genes which provides an additional level of safety for its manufacturing. Overall, this study highlights the importance of the upstream process and starting biologic materials to generate safer rAAV biotherapeutic products.
Assuntos
Baculoviridae , Dependovirus , Técnicas de Transferência de Genes , Vetores Genéticos , Baculoviridae/genética , Dependovirus/genética , Vetores Genéticos/genética , Recombinação HomólogaRESUMO
Targeted gene editing in hematopoietic stem cells (HSCs) is a promising treatment for several diseases. However, the limited efficiency of homology-directed repair (HDR) in HSCs and the unknown impact of the procedure on clonal composition and dynamics of transplantation have hampered clinical translation. Here, we apply a barcoding strategy to clonal tracking of edited cells (BAR-Seq) and show that editing activates p53, which substantially shrinks the HSC clonal repertoire in hematochimeric mice, although engrafted edited clones preserve multilineage and self-renewing capacity. Transient p53 inhibition restored polyclonal graft composition. We increased HDR efficiency by forcing cell-cycle progression and upregulating components of the HDR machinery through transient expression of the adenovirus 5 E4orf6/7 protein, which recruits the cell-cycle controller E2F on its target genes. Combined E4orf6/7 expression and p53 inhibition resulted in HDR editing efficiencies of up to 50% in the long-term human graft, without perturbing repopulation and self-renewal of edited HSCs. This enhanced protocol should broaden applicability of HSC gene editing and pave its way to clinical translation.
Assuntos
Rastreamento de Células , Edição de Genes , Células-Tronco Hematopoéticas/citologia , Animais , Sequência de Bases , Linhagem da Célula , Células Clonais , Dependovirus/metabolismo , Fase G2 , Células HEK293 , Humanos , Camundongos , Reparo de DNA por Recombinação , Reprodutibilidade dos Testes , Fase S , Transcrição Gênica , Transplante Heterólogo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Proteínas Virais/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Precise gene editing in hematopoietic stem and progenitor cells (HSPCs) holds promise for treating genetic diseases. However, responses triggered by programmable nucleases in HSPCs are poorly characterized and may negatively impact HSPC engraftment and long-term repopulation capacity. Here, we induced either one or several DNA double-stranded breaks (DSBs) with optimized zinc-finger and CRISPR/Cas9 nucleases and monitored DNA damage response (DDR) foci induction, cell-cycle progression, and transcriptional responses in HSPC subpopulations, with up to single-cell resolution. p53-mediated DDR pathway activation was the predominant response to even single-nuclease-induced DSBs across all HSPC subtypes analyzed. Excess DSB load and/or adeno-associated virus (AAV)-mediated delivery of DNA repair templates induced cumulative p53 pathway activation, constraining proliferation, yield, and engraftment of edited HSPCs. However, functional impairment was reversible when DDR burden was low and could be overcome by transient p53 inhibition. These findings provide molecular and functional evidence for feasible and seamless gene editing in HSPCs.
Assuntos
Dano ao DNA , Edição de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCIDRESUMO
Targeted genome editing in hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematological diseases. However, the limited efficiency of homology-directed editing in primitive HSPCs constrains the yield of corrected cells and might affect the feasibility and safety of clinical translation. These concerns need to be addressed in stringent preclinical models and overcome by developing more efficient editing methods. We generated a humanized X-linked severe combined immunodeficiency (SCID-X1) mouse model and evaluated the efficacy and safety of hematopoietic reconstitution from limited input of functional HSPCs, establishing thresholds for full correction upon different types of conditioning. Unexpectedly, conditioning before HSPC infusion was required to protect the mice from lymphoma developing when transplanting small numbers of progenitors. We then designed a one-size-fits-all IL2RG (interleukin-2 receptor common γ-chain) gene correction strategy and, using the same reagents suitable for correction of human HSPC, validated the edited human gene in the disease model in vivo, providing evidence of targeted gene editing in mouse HSPCs and demonstrating the functionality of the IL2RG-edited lymphoid progeny. Finally, we optimized editing reagents and protocol for human HSPCs and attained the threshold of IL2RG editing in long-term repopulating cells predicted to safely rescue the disease, using clinically relevant HSPC sources and highly specific zinc finger nucleases or CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9). Overall, our work establishes the rationale and guiding principles for clinical translation of SCID-X1 gene editing and provides a framework for developing gene correction for other diseases.