Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Cell Host Microbe ; 32(7): 1048-1049, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991502

RESUMO

Gestational diabetes mellitus (GDM) is associated with increased risk of metabolic and neurodevelopmental disorders in offspring. In this issue of Cell Host & Microbe, Wang et al. provide evidence that changes in the gut microbiome of mothers with GDM may lead to dysbiosis in their infants and altered development in a sex-dependent manner.


Assuntos
Diabetes Gestacional , Disbiose , Microbioma Gastrointestinal , Diabetes Gestacional/microbiologia , Diabetes Gestacional/metabolismo , Gravidez , Microbioma Gastrointestinal/fisiologia , Humanos , Feminino , Disbiose/microbiologia , Lactente , Masculino , Recém-Nascido
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000289

RESUMO

Inflammatory bowel disease (IBD) is an immunologically complex disorder involving genetic, microbial, and environmental risk factors. Its global burden has continued to rise since industrialization, with epidemiological studies suggesting that ambient particulate matter (PM) in air pollution could be a contributing factor. Prior animal studies have shown that oral PM10 exposure promotes intestinal inflammation in a genetic IBD model and that PM2.5 inhalation exposure can increase intestinal levels of pro-inflammatory cytokines. PM10 and PM2.5 include ultrafine particles (UFP), which have an aerodynamic diameter of <0.10 µm and biophysical and biochemical properties that promote toxicity. UFP inhalation, however, has not been previously studied in the context of murine models of IBD. Here, we demonstrated that ambient PM is toxic to cultured Caco-2 intestinal epithelial cells and examined whether UFP inhalation affected acute colitis induced by dextran sodium sulfate and 2,4,6-trinitrobenzenesulfonic acid. C57BL/6J mice were exposed to filtered air (FA) or various types of ambient PM reaerosolized in the ultrafine size range at ~300 µg/m3, 6 h/day, 3-5 days/week, starting 7-10 days before disease induction. No differences in weight change, clinical disease activity, or histology were observed between the PM and FA-exposed groups. In conclusion, UFP inhalation exposure did not exacerbate intestinal inflammation in acute, chemically-induced colitis models.


Assuntos
Colite , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Material Particulado , Ácido Trinitrobenzenossulfônico , Material Particulado/toxicidade , Animais , Colite/induzido quimicamente , Colite/patologia , Camundongos , Humanos , Sulfato de Dextrana/toxicidade , Células CACO-2 , Ácido Trinitrobenzenossulfônico/toxicidade , Ácido Trinitrobenzenossulfônico/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/metabolismo , Modelos Animais de Doenças , Masculino , Tamanho da Partícula
4.
PLoS Pathog ; 20(7): e1012380, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028765

RESUMO

Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG (chpGC), an effector that is recognized in eggplant. Introduction of chpGC into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm101, failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.

5.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948750

RESUMO

The global epidemic of drug-resistant Candida auris continues unabated. We do not know what caused the unprecedented appearance of pan-drug resistant (PDR) Candida auris strains in a hospitalized patient in New York; the initial report highlighted both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine antifungal drugs. However, the factors that allow C. auris to acquire multi-drug resistance and pan-drug resistance are not known. Therefore, we conducted a comprehensive genomic, transcriptomic, and phenomic analysis to better understand PDR C. auris . Among 1,570 genetic variants in drug-resistant C. auris , 299 were unique to PDR strains. The whole genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR C. auris revealed two genes to be significantly differentially expressed - a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 candidate transcripts had no known homology among expressed transcripts found in other organisms. We observed no fitness defects among multi-drug resistant (MDR) and PDR C. auris strains grown in nutrient-deficient or - enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients with an uptick in the utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modelling of 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in C. auris to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR C. auris in response to antifungal drug lethality without deleterious fitness costs.

6.
NPJ Parkinsons Dis ; 10(1): 89, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649365

RESUMO

It has been suggested that gut microbiota influence Parkinson's disease (PD) via the gut-brain axis. Here, we examine associations between diet and gut microbiome composition and its predicted functional pathways in patients with PD. We assessed gut microbiota in fecal samples from 85 PD patients in central California using 16S rRNA gene sequencing. Diet quality was assessed by calculating the Healthy Eating Index 2015 (HEI-2015) based on the Diet History Questionnaire II. We examined associations of diet quality, fiber, and added sugar intake with microbial diversity, composition, taxon abundance, and predicted metagenomic profiles, adjusting for age, sex, race/ethnicity, and sequencing platform. Higher HEI scores and fiber intake were associated with an increase in putative anti-inflammatory butyrate-producing bacteria, such as the genera Butyricicoccus and Coprococcus 1. Conversely, higher added sugar intake was associated with an increase in putative pro-inflammatory bacteria, such as the genera Klebsiella. Predictive metagenomics suggested that bacterial genes involved in the biosynthesis of lipopolysaccharide decreased with higher HEI scores, whereas a simultaneous decrease in genes involved in taurine degradation indicates less neuroinflammation. We found that a healthy diet, fiber, and added sugar intake affect the gut microbiome composition and its predicted metagenomic function in PD patients. This suggests that a healthy diet may support gut microbiome that has a positive influence on PD risk and progression.

7.
Cancer Med ; 13(9): e7212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686626

RESUMO

BACKGROUND: A phase I clinical study for patients with locally advanced H&N cancer with a new class of botanical drug APG-157 provided hints of potential synergy with immunotherapy. We sought to evaluate the efficacy of the combination of APG-157 and immune checkpoint inhibitors. METHODS: CCL23, UM-SCC1 (human), and SCCVII (HPV-), MEER (HPV+) (murine) H&N cancer cell lines were utilized for in vitro and in vivo studies. We measured tumor growth by treating the mice with APG-157, anti-PD-1, and anti-CTLA-4 antibody combinations (8 groups). The tumor microenvironments were assessed by multi-color flow cytometry, immunohistochemistry, and RNA-seq analysis. Fecal microbiome was analyzed by 16S rRNA sequence. RESULTS: Among the eight treatment groups, APG-157 + anti-CTLA-4 demonstrated the best tumor growth suppression (p = 0.0065 compared to the control), followed by anti-PD-1 + anti-CTLA-4 treatment group (p = 0.48 compared to the control). Immunophenotype showed over 30% of CD8+ T cells in APG-157 + anti-CTLA-4 group compared to 4%-5% of CD8+ T cells for the control group. Differential gene expression analysis revealed that APG-157 + anti-CTLA-4 group showed an enriched set of genes for inflammatory response and apoptotic signaling pathways. The fecal microbiome analysis showed a substantial difference of lactobacillus genus among groups, highest for APG-157 + anti-CTLA-4 treatment group. We were unable to perform correlative studies for MEER model as there was tumor growth suppression with all treatment conditions, except for the untreated control group. CONCLUSIONS: The results indicate that APG-157 and immune checkpoint inhibitor combination treatment could potentially lead to improved tumor control.


Assuntos
Antígeno CTLA-4 , Neoplasias de Cabeça e Pescoço , Inibidores de Checkpoint Imunológico , Microambiente Tumoral , Animais , Camundongos , Antígeno CTLA-4/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Feminino , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Modelos Animais de Doenças
8.
ACR Open Rheumatol ; 6(7): 421-427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653503

RESUMO

OBJECTIVE: Emerging research suggests that rheumatoid arthritis (RA) is associated with intestinal dysbiosis. This prospective pilot study evaluates changes in intestinal microbial composition in patients with RA initiating treatment with either methotrexate (MTX) or a tumor necrosis factor inhibitor (TNFi). METHODS: Consecutive patients, fulfilling the 2010 American College of Rheumatology/EULAR classification criteria for RA, who started treatment with either MTX or TNFi delivered a stool sample upon initiation of immunosuppression and 3 months later. A 16S ribosomal RNA gene-based validated microbiota test (GA-map Dysbiosis Index Score [DIS], Genetic Analysis, Oslo, Norway) was used to evaluate for the presence and degree of dysbiosis. Fecal levels of Prevotella copri (P. copri) were analyzed by custom-made quantitative polymerase chain reaction. Changes in microbial composition were analyzed in relation to changes in disease activity, as measured by the disease activity score based on 28-joint counts, using C-reactive protein. RESULTS: At baseline, dysbiosis was present in 33 of 50 (66%) participants and more common in participants with more than 2 years of disease duration (P = 0.019). At the 3-month follow-up, 27 of 50 (54%) were good treatment responders and the DIS had improved in 14 of 50 (28%). Participants initiating TNFi more often exhibited improvement in the DIS compared with those initiating MTX (P = 0.031). P. copri was identified in 32 of 50 (64%) at baseline. An improvement in disease activity score based on 28-joint counts, using C-reactive protein was associated with a simultaneous decrease in P. copri abundance (rs = 0.30, P = 0.036). CONCLUSION: This study affirms that dysbiosis is a feature of RA. Although patients were not randomized to MTX or TNFi, the findings suggest that specific therapies may differentially modulate the gastrointestinal microbiota in RA. The association between P. copri and treatment response requires further study.

9.
Front Neurosci ; 18: 1363094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576870

RESUMO

Introduction: Serotonin (5-HT) is critical for neurodevelopment and the serotonin transporter (SERT) modulates serotonin levels. Perturbed prenatal and postnatal dietary exposures affect the developing offspring predisposing to neurobehavioral disorders in the adult. We hypothesized that the postnatal brain 5-HT-SERT imbalance associated with gut dysbiosis forms the contributing gut-brain axis dependent mechanism responsible for such ultimate phenotypes. Methods: Employing maternal diet restricted (IUGR, n=8) and high fat+high fructose (HFhf, n=6) dietary modifications, rodent brain serotonin was assessed temporally by ELISA and SERT by quantitative Western blot analysis. Simultaneously, colonic microbiome studies were performed. Results: At early postnatal (P) day 2 no changes in the IUGR, but a ~24% reduction in serotonin (p = 0.00005) in the HFhf group occurred, particularly in the males (p = 0.000007) revealing a male versus female difference (p = 0.006). No such changes in SERT concentrations emerged. At late P21 the IUGR group reared on HFhf (IUGR/HFhf, (n = 4) diet revealed increased serotonin by ~53% in males (p = 0.0001) and 36% in females (p = 0.023). While only females demonstrated a ~40% decrease in serotonin (p = 0.010), the males only trended lower without a significant change within the HFhf group (p = 0.146). SERT on the other hand was no different in HFhf or IUGR/RC, with only the female IUGR/HFhf revealing a 28% decrease (p = 0.036). In colonic microbiome studies, serotonin-producing Bacteriodes increased with decreased Lactobacillus at P2, while the serotonin-producing Streptococcus species increased in IUGR/HFhf at P21. Sex-specific changes emerged in association with brain serotonin or SERT in the case of Alistipase, Anaeroplasma, Blautia, Doria, Lactococcus, Proteus, and Roseburia genera. Discussion: We conclude that an imbalanced 5-HT-SERT axis during postnatal brain development is sex-specific and induced by maternal dietary modifications related to postnatal gut dysbiosis. We speculate that these early changes albeit transient may permanently alter critical neural maturational processes affecting circuitry formation, thereby perturbing the neuropsychiatric equipoise.

10.
Environ Health ; 23(1): 41, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627687

RESUMO

BACKGROUND: Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. METHODS: We recruited 190 participants from a community-based epidemiologic study of Parkinson's disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson's disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray-Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. RESULTS: OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. CONCLUSION: In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doença de Parkinson , Praguicidas , Idoso , Humanos , Bactérias , Compostos Organofosforados , Praguicidas/efeitos adversos , RNA Ribossômico 16S/genética
11.
Gut Liver ; 18(4): 611-620, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38509701

RESUMO

Background/Aims: While DNA methylation and gastric microbiome are each associated with gastric cancer (GC), their combined role in predicting GC remains unclear. This study investigated the potential of a combined DNA methylation and gastric microbiome signature to predict Helicobacter pylori-negative GC. Methods: In this case-control study, we conducted quantitative methylation-specific polymerase chain reaction to measure the methylation levels of DKK3, SFRP1, EMX1, NKX6-1, MIR124-3, and TWIST1 in the gastric mucosa from 75 H. pylori-negative patients, including chronic gastritis (CG), intestinal metaplasia (IM), and GC. A combined analysis of DNA methylation and gastric microbiome, using 16S rRNA gene sequencing, was performed in 30 of 75 patients. Results: The methylation levels of DKK3, SFRP1, EMX1, MIR124-3, and TWIST1 were significantly higher in patients with GC than in controls (all q<0.05). MIR124-3 and TWIST1 methylation levels were higher in patients with IM than those with CG and also in those with GC than in those with IM (all q<0.05). A higher methylation level of TWIST1 was an independent predictor for H. pylori-negative GC after adjusting for age, sex, and atrophy (odds ratio [OR], 15.15; 95% confidence interval [CI], 1.58 to 145.46; p=0.018). The combination of TWIST1 methylation and GC microbiome index (a microbiome marker) was significantly associated with H. pylori-negative GC after adjusting for age, sex, and atrophy (OR, 50.00; 95% CI, 1.69 to 1,476; p=0.024). Conclusions: The combination of TWIST1 methylation and GC microbiome index may offer potential as a biomarker for predicting H. pylori-negative GC.


Assuntos
Metilação de DNA , Mucosa Gástrica , Microbioma Gastrointestinal , Helicobacter pylori , Neoplasias Gástricas , Humanos , Masculino , Feminino , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/genética , Pessoa de Meia-Idade , Estudos de Casos e Controles , Helicobacter pylori/genética , Mucosa Gástrica/microbiologia , Microbioma Gastrointestinal/genética , Proteína 1 Relacionada a Twist/genética , Idoso , MicroRNAs/análise , Proteínas Nucleares/genética , Gastrite/microbiologia , Gastrite/genética , Biomarcadores Tumorais/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Infecções por Helicobacter/microbiologia , Metaplasia/microbiologia , Metaplasia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Homeodomínio
12.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38555475

RESUMO

The lack of interoperable data standards among reference genome data-sharing platforms inhibits cross-platform analysis while increasing the risk of data provenance loss. Here, we describe the FAIR bioHeaders Reference genome (FHR), a metadata standard guided by the principles of Findability, Accessibility, Interoperability and Reuse (FAIR) in addition to the principles of Transparency, Responsibility, User focus, Sustainability and Technology. The objective of FHR is to provide an extensive set of data serialisation methods and minimum data field requirements while still maintaining extensibility, flexibility and expressivity in an increasingly decentralised genomic data ecosystem. The effort needed to implement FHR is low; FHR's design philosophy ensures easy implementation while retaining the benefits gained from recording both machine and human-readable provenance.


Assuntos
Software , Humanos , Genoma , Genômica , Disseminação de Informação
13.
Microbiol Spectr ; 12(4): e0413823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426767

RESUMO

Chemistry in eukaryotic intercellular spaces is shaped by both hosts and symbiotic microorganisms such as bacteria. Pathogenic microorganisms like barley-associated Xanthomonas translucens (Xt) swiftly overtake the inner leaf tissue becoming the dominant microbial community member during disease development. The dynamic metabolic changes due to Xt pathogenesis in the mesophyll spaces remain unknown. Genomic group I of Xt consists of two barley-infecting lineages: pathovar translucens (Xtt) and pathovar undulosa (Xtu). Xtu and Xtt, although genomically distinct, cause similar water-soaked lesions. To define the metabolic signals associated with inner leaf colonization, we used untargeted metabolomics to characterize Xtu and Xtt metabolism signatures associated with mesophyll growth. We found that mesophyll apoplast fluid from infected tissue yielded a distinct metabolic profile and shift from catabolic to anabolic processes over time compared to water-infiltrated control. The pathways with the most differentially expressed metabolites by time were glycolysis, tricarboxylic acid cycle, sucrose metabolism, pentose interconversion, amino acids, galactose, and purine metabolism. Hierarchical clustering and principal component analysis showed that metabolic changes were more affected by the time point rather than the individual colonization of the inner leaves by Xtt compared to Xtu. Overall, in this study, we identified metabolic pathways that explain carbon and nitrogen usage during host-bacterial interactions over time for mesophyll tissue colonization. This foundational research provides initial insights into shared metabolic strategies of inner leaf colonization niche occupation by related but phylogenetically distinct phyllosphere bacteria. IMPORTANCE: The phyllosphere is a habitat for microorganisms including pathogenic bacteria. Metabolic shifts in the inner leaf spaces for most plant-microbe interactions are unknown, especially for Xanthomonas species in understudied plants like barley (Hordeum vulgare). Xanthomonas translucens pv. translucens (Xtt) and Xanthomonas translucens pv. undulosa (Xtu) are phylogenomically distinct, but both colonize barley leaves for pathogenesis. In this study, we used untargeted metabolomics to shed light on Xtu and Xtt metabolic signatures. Our findings revealed a dynamic metabolic landscape that changes over time, rather than exhibiting a pattern associated with individual pathovars. These results provide initial insights into the metabolic mechanisms of X. translucens inner leaf pathogenesis.


Assuntos
Hordeum , Xanthomonas , Hordeum/microbiologia , Xanthomonas/genética , Folhas de Planta , Água
14.
Plant Dis ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389385

RESUMO

In May 2023, pennycress (Thlaspi arvense, L.) lines undergoing seed production in the Walnut Street Greenhouse at the University of Wisconsin-Madison displayed symptoms of chlorosis and black necrotic leaf spots (Fig. S1-A). Lesions eventually enlarged to 1-2 cm in diameter, became necrotic, and coalesced to cover a substantial portion of leaves. Symptoms were observed in ~30% of the pennycress lines adversely affecting overall growth and reproduction. Symptomatic leaves were surface sterilized for 30 seconds in 0.75% sodium hypochlorite, rinsed in sterile deionized water, and bacteria were isolated using three-phase streaking of symptomatic tissue onto KB medium (King et al., 1954). Single colonies of three isolates (creamy white to yellow) from this initial isolation were streaked onto KB medium to obtain pure cultures. Individual colonies were transferred for growth overnight in nutrient broth (Difco) and an equal amount of the broth was added to 30% glycerol in deionized (di) water and stored at -80 °C. To validate Koch's Postulates, bacteria were grown from these stocks on Yeast Dextrose Calcium Carbonate medium (Wilson et al., 1967) and were used to inoculate 5-week-old pennycress plants in the greenhouse. The bacteria were grown for 48 hours at 26°C, suspended in 300 ml of 0.05 M PBS buffer (pH=7.2) for inoculum preparation. Plants were inoculated with three bacterial isolates (approx. 108 CFU/ml) by piercing the mid veins or hydathodes with a sterilized toothpick dipped in the suspension. Inoculated plants were then enclosed in clear plastic bags for 24-48 hours and maintained in the greenhouse at a constant temperature of 26°C with a 16-hour photoperiod. After seven days, water-soaked lesions appeared on the inoculated leaves, eventually developing into the characteristic black spots (Fig. S1-B). DNA from the original isolates was extracted, and 16S PCR and sequencing of the positive bands was done. The negative control only produced brown spots at the site of inoculation (Fig. S1-C). The primer sequences were as follows: 27F: AGAGTTTGATCMTGGCTCAG; 1492R: GGTTACCTTGTTACGACTT (Eden et al., 1991; Weisburg et al., 1991). A BLAST analysis showed that the isolates had an E value of 0.0 to the genus Xanthomonas as well as 100% identity. Amplification and sequencing of the bacterium using gyrB amplicons revealed a 99-100% pairwise match with Xc. To enhance taxonomy resolution and confirm the identity of these isolates, the complete genomes of three samples were sequenced using NextSeq2000 Illumina platform (NCBI bioproject ID PRJNA1040293). Average Nucleotide Identity (ANI) analysis was conducted with representative strains from the Xc species (Dubrow et al., 2022), using PanExplorer (Dereeper et al., 2020) featuring integrated FastANI module (Jain et al., 2018). The isolates genomes exhibited over 98% identity and clustered with that of Xc pv. incanae and Xc pv. barbarae (Fig S2). Further work will be required to identify the pathovar of Xc identified in this study through phenotypic host range assay. This marks the first documented case of Xc in pennycress in the Midwestern US. Given the potential use of pennycress as a cover crop in the region, further investigations are warranted to assess its economic impact on production and develop management strategies.

15.
Nutrients ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337646

RESUMO

The human gut microbiome is a highly dynamic community of bacteria, fungi, viruses, archaea, and protozoans that resides within the gastrointestinal tract [...].


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Bactérias , Archaea , Fungos
16.
Phytopathology ; 114(5): 917-929, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38170665

RESUMO

Fruit and vegetable crops are important sources of nutrition and income globally. Producing these high-value crops requires significant investment of often scarce resources, and, therefore, the risks associated with climate change and accompanying disease pressures are especially important. Climate change influences the occurrence and pressure of plant diseases, enabling new pathogens to emerge and old enemies to reemerge. Specific environmental changes attributed to climate change, particularly temperature fluctuations and intense rainfall events, greatly alter fruit and vegetable disease incidence and severity. In turn, fruit and vegetable microbiomes, and subsequently overall plant health, are also affected by climate change. Changing disease pressures cause growers and researchers to reassess disease management and climate change adaptation strategies. Approaches such as climate smart integrated pest management, smart sprayer technology, protected culture cultivation, advanced diagnostics, and new soilborne disease management strategies are providing new tools for specialty crops growers. Researchers and educators need to work closely with growers to establish fruit and vegetable production systems that are resilient and responsive to changing climates. This review explores the effects of climate change on specialty food crops, pathogens, insect vectors, and pathosystems, as well as adaptations needed to ensure optimal plant health and environmental and economic sustainability.


Assuntos
Mudança Climática , Produtos Agrícolas , Frutas , Doenças das Plantas , Verduras , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos , Frutas/microbiologia , Verduras/microbiologia , Produtos Agrícolas/microbiologia
17.
Environ Res ; 248: 118242, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242419

RESUMO

Exposure to ultrafine particles (UFPs) has been associated with multiple adverse health effects. Inhaled UFPs could reach the gastrointestinal tract and influence the composition of the gut microbiome. We have previously shown that oral ingestion of UFPs alters the gut microbiome and promotes intestinal inflammation in hyperlipidemic Ldlr-/- mice. Particulate matter (PM)2.5 inhalation studies have also demonstrated microbiome shifts in normolipidemic C57BL/6 mice. However, it is not known whether changes in microbiome precede or follow inflammatory effects in the intestinal mucosa. We hypothesized that inhaled UFPs modulate the gut microbiome prior to the development of intestinal inflammation. We studied the effects of UFP inhalation on the gut microbiome and intestinal mucosa in two hyperlipidemic mouse models (ApoE-/- mice and Ldlr-/- mice) and normolipidemic C57BL/6 mice. Mice were exposed to PM in the ultrafine-size range by inhalation for 6 h a day, 3 times a week for 10 weeks at a concentration of 300-350 µg/m3.16S rRNA gene sequencing was performed to characterize sequential changes in the fecal microbiome during exposures, and changes in the intestinal microbiome at the end. PM exposure led to progressive differentiation of the microbiota over time, associated with increased fecal microbial richness and evenness, altered microbial composition, and differentially abundant microbes by week 10 depending on the mouse model. Cross-sectional analysis of the small intestinal microbiome at week 10 showed significant changes in α-diversity, ß-diversity, and abundances of individual microbial taxa in the two hyperlipidemic models. These alterations of the intestinal microbiome were not accompanied, and therefore could not be caused, by increased intestinal inflammation as determined by histological analysis of small and large intestine, cytokine gene expression, and levels of fecal lipocalin. In conclusion, 10-week inhalation exposures to UFPs induced taxonomic changes in the microbiome of various animal models in the absence of intestinal inflammation.


Assuntos
Poluentes Atmosféricos , Microbioma Gastrointestinal , Camundongos , Animais , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Exposição por Inalação/análise , RNA Ribossômico 16S , Estudos Transversais , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Inflamação/induzido quimicamente
18.
Microbiol Resour Announc ; 13(2): e0104523, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38289057

RESUMO

The ATCC Genome Portal (AGP, https://genomes.atcc.org/) is a database of authenticated genomes for bacteria, fungi, protists, and viruses held in ATCC's biorepository. It now includes 3,938 assemblies (253% increase) produced under ISO 9000 by ATCC. Here, we present new features and content added to the AGP for the research community.

19.
mSystems ; 9(2): e0079523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275768

RESUMO

Quickly understanding the genomic changes that lead to pathogen emergence is necessary to launch mitigation efforts and reduce harm. In this study, we tracked in real time a 2022 bacterial plant disease outbreak in U.S. geraniums (Pelargonium × hortorum) caused by Xhp2022, a novel lineage of Xanthomonas hortorum. Genomes from 31 Xhp2022 isolates from seven states showed limited chromosomal variation and all contained a single plasmid (p93). Time tree and single nucleotide polymorphism whole-genome analysis estimated that Xhp2022 emerged within the last decade. The phylogenomic analysis determined that p93 resulted from the cointegration of three plasmids (p31, p45, and p66) found sporadically across isolates from previous outbreaks. Although p93 had a 49 kb nucleotide reduction, it retained putative fitness genes, which became predominant in the 2022 outbreak. Overall, we demonstrated, through rapid whole-genome sequencing and analysis, a recent, traceable event of genome reduction for niche adaptation typically observed over millennia in obligate and fastidious pathogens.IMPORTANCEThe geranium industry, valued at $4 million annually, faces an ongoing Xanthomonas hortorum pv. pelargonii (Xhp) pathogen outbreak. To track and describe the outbreak, we compared the genome structure across historical and globally distributed isolates. Our research revealed Xhp population has not had chromosome rearrangements since 1974 and has three distinct plasmids. In 2012, we found all three plasmids in individual Xhp isolates. However, in 2022, the three plasmids co-integrated into one plasmid named p93. p93 retained putative fitness genes but lost extraneous genomic material. Our findings show that the 2022 strain group of the bacterial plant pathogen Xanthomonas hortorum underwent a plasmid reduction. We also observed several Xanthomonas species from different years, hosts, and continents have similar plasmids to p93, possibly due to shared agricultural settings. We noticed parallels between genome efficiency and reduction that we see across millennia with obligate parasites with increased niche specificity.


Assuntos
Xanthomonas , Plasmídeos/genética , Xanthomonas/genética , Genômica , Surtos de Doenças
20.
Inflamm Bowel Dis ; 30(3): 336-346, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650887

RESUMO

BACKGROUND: Stress reactivity (SR) is associated with increased risk of flares in ulcerative colitis (UC) patients. Because both preclinical and clinical data support that stress can influence gut microbiome composition and function, we investigated whether microbiome profiles of SR exist in UC. METHODS: Ninety-one UC subjects in clinical and biochemical remission were classified into high and low SR groups by questionnaires. Baseline and longitudinal characterization of the intestinal microbiome was performed by 16S rRNA gene sequencing and fecal and plasma global untargeted metabolomics. Microbe, fecal metabolite, and plasma metabolite abundances were analyzed separately to create random forest classifiers for high SR and biomarker-derived SR scores. RESULTS: High SR reactivity was characterized by altered abundance of fecal microbes, primarily in the Ruminococcaceae and Lachnospiraceae families; fecal metabolites including reduced levels of monoacylglycerols (endocannabinoid-related) and bile acids; and plasma metabolites including increased 4-ethyl phenyl sulfate, 1-arachidonoylglycerol (endocannabinoid), and sphingomyelin. Classifiers generated from baseline microbe, fecal metabolite, and plasma metabolite abundance distinguished high vs low SR with area under the receiver operating characteristic curve of 0.81, 0.83, and 0.91, respectively. Stress reactivity scores derived from these classifiers were significantly associated with flare risk during 6 to 24 months of follow-up, with odds ratios of 3.8, 4.1, and 4.9. Clinical flare and intestinal inflammation did not alter fecal microbial abundances but attenuated fecal and plasma metabolite differences between high and low SR. CONCLUSIONS: High SR in UC is characterized by microbial signatures that predict clinical flare risk, suggesting that the microbiome may contribute to stress-induced UC flares.


Assuntos
Colite Ulcerativa , Humanos , Endocanabinoides , RNA Ribossômico 16S , Ácidos e Sais Biliares , Clostridiales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA