Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Rep ; 43(4): 114020, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38554280

RESUMO

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.


Assuntos
Autofagia , Inibidores de Checkpoint Imunológico , Linfonodos , Esfingosina/análogos & derivados , Linfócitos T , Autofagia/efeitos dos fármacos , Animais , Linfonodos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos Endogâmicos C57BL , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Células Endoteliais/metabolismo , Esfingosina/farmacologia , Esfingosina/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Imunoterapia/métodos , Movimento Celular
2.
Cell Rep ; 43(1): 113631, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38183651

RESUMO

Glioblastoma stem-like cells (GSCs) compose a tumor-initiating and -propagating population remarkably vulnerable to variation in the stability and integrity of the lysosomal compartment. Previous work has shown that the expression and activity of the paracaspase MALT1 control GSC viability via lysosome abundance. However, the underlying mechanisms remain elusive. By combining RNA sequencing (RNA-seq) with proteome-wide label-free quantification, we now report that MALT1 repression in patient-derived GSCs alters the homeostasis of cholesterol, which accumulates in late endosomes (LEs)-lysosomes. This failure in cholesterol supply culminates in cell death and autophagy defects, which can be partially reverted by providing exogenous membrane-permeable cholesterol to GSCs. From a molecular standpoint, a targeted lysosome proteome analysis unraveled that Niemann-Pick type C (NPC) lysosomal cholesterol transporters are diluted when MALT1 is impaired. Accordingly, we found that NPC1/2 inhibition and silencing partially mirror MALT1 loss-of-function phenotypes. This supports the notion that GSC fitness relies on lysosomal cholesterol homeostasis.


Assuntos
Glioblastoma , Doença de Niemann-Pick Tipo C , Humanos , Proteoma/metabolismo , Proteínas de Transporte/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Homeostase , Lisossomos/metabolismo , Colesterol/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo
3.
EMBO Mol Med ; 15(12): e18028, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38009521

RESUMO

Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.


Assuntos
Melanoma , Humanos , Camundongos , Animais , Melanoma/patologia , Células Endoteliais/metabolismo , Linfócitos T CD8-Positivos , NF-kappa B/metabolismo , Autofagia , Imunoterapia , Microambiente Tumoral
4.
iScience ; 25(10): 105118, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185361

RESUMO

Extracellular vesicles (EVs) are lipid-based nanosized particles that convey biological material from donor to recipient cells. EVs play key roles in glioblastoma progression because glioblastoma stem-like cells (GSCs) release pro-oncogenic, pro-angiogenic, and pro-inflammatory EVs. However, the molecular basis of EV release remains poorly understood. Here, we report the identification of the pseudokinase MLKL, a crucial effector of cell death by necroptosis, as a regulator of the constitutive secretion of EVs in GSCs. We find that genetic, protein, and pharmacological targeting of MLKL alters intracellular trafficking and EV release, and reduces GSC expansion. Nevertheless, this function ascribed to MLKL appears independent of its role during necroptosis. In vivo, pharmacological inhibition of MLKL reduces the tumor burden and the level of plasmatic EVs. This work highlights the necroptosis-independent role of MLKL in vesicle release and suggests that interfering with EVs is a promising therapeutic option to sensitize glioblastoma cells.

5.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34287648

RESUMO

Glioblastoma is one of the most lethal forms of adult cancer, with a median survival of ∼15 mo. Targeting glioblastoma stem-like cells (GSCs) at the origin of tumor formation and relapse may prove beneficial. In situ, GSCs are nested within the vascular bed in tight interaction with brain endothelial cells, which positively control their expansion. Because GSCs are notably addicted to apelin (APLN), sourced from the surrounding endothelial stroma, the APLN/APLNR nexus has emerged as a druggable network. However, how this signaling axis operates in gliomagenesis remains underestimated. Here, we find that the glycoprotein GP130 interacts with APLNR at the plasma membrane of GSCs and arbitrates its availability at the surface via ELMOD1, which may further impact on ARF-mediated endovesicular trafficking. From a functional standpoint, interfering with GP130 thwarts APLNR-mediated self-renewal of GSCs ex vivo. Thus, GP130 emerges as an unexpected cicerone to the G protein-coupled APLN receptor, opening new therapeutic perspectives toward the targeting of cancer stem cells.


Assuntos
Receptores de Apelina/genética , Apelina/genética , Neoplasias Encefálicas/genética , Receptor gp130 de Citocina/genética , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Idoso , Apelina/metabolismo , Receptores de Apelina/metabolismo , Transporte Biológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proliferação de Células , Receptor gp130 de Citocina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/patologia , Células HEK293 , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Análise de Sobrevida , Vesículas Transportadoras/metabolismo
6.
Cell Cycle ; 19(17): 2094-2104, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32723137

RESUMO

Lysosomes are acidic, dynamic organelles that supervise catabolism, integrate signaling cascades, and tune cellular trafficking. Moreover, the loss of their integrity may jeopardize cell viability. In cancer cells, lysosomes are qualitatively and quantitatively modified for the tumor's own benefit. For all these reasons, these organelles emerge as appealing intracellular targets to manipulate non-oncogene addiction. This is of particular interest for brain diseases, including neurodegenerative disorders and cancer, in which stem cells are exhausted and transformed, respectively. Recent publications had demonstrated that stem cells displayed disarmed lysosomes in terms of number and functions during aging and oncogenic progression. Likewise, our laboratory identified that the arginine protease MALT1, normally dedicated to the assembly of proper NF-kB activation and processing a number of substrates, arbitrates lysosome biogenesis and mTOR signaling in glioblastoma stem-like cells. Indeed, blocking either the expression or the activity of this enzyme leads to an aberrant increase of lysosomes, alongside of the down-regulation of the mTOR signaling. This surge of lysosomes eradicates glioblastoma stem-like cells. Targeting lysosomes might thus inspire the design of new strategies to face this devastating human cancer. Here, we provide an overview of the functions of the lysosome as well as its role as a cell death initiator, to highlight the potential of lysosomal drugs for glioblastoma therapy.


Assuntos
Glioblastoma/metabolismo , Lisossomos/metabolismo , Animais , Morte Celular , Humanos , Fusão de Membrana , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
8.
EMBO J ; 39(1): e102030, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31774199

RESUMO

Glioblastoma is one of the most lethal forms of adult cancer with a median survival of around 15 months. A potential treatment strategy involves targeting glioblastoma stem-like cells (GSC), which constitute a cell autonomous reservoir of aberrant cells able to initiate, maintain, and repopulate the tumor mass. Here, we report that the expression of the paracaspase mucosa-associated lymphoid tissue l (MALT1), a protease previously linked to antigen receptor-mediated NF-κB activation and B-cell lymphoma survival, inversely correlates with patient probability of survival. The knockdown of MALT1 largely impaired the expansion of patient-derived stem-like cells in vitro, and this could be recapitulated with pharmacological inhibitors, in vitro and in vivo. Blocking MALT1 protease activity increases the endo-lysosome abundance, impairs autophagic flux, and culminates in lysosomal-mediated cell death, concomitantly with mTOR inactivation and dispersion from endo-lysosomes. These findings place MALT1 as a new druggable target involved in glioblastoma and unveil ways to modulate the homeostasis of endo-lysosomes.


Assuntos
Biomarcadores Tumorais/metabolismo , Endossomos/patologia , Glioma/patologia , Homeostase , Lisossomos/patologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Células-Tronco Neoplásicas/patologia , Idoso , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Endossomos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Humanos , Ativação Linfocitária , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Células-Tronco Neoplásicas/metabolismo , Proteólise , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Female Pelvic Med Reconstr Surg ; 25(5): 372-377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30063484

RESUMO

OBJECTIVE: The objective of this study was to elicit information priorities from women considering treatment for pelvic organ prolapse (POP). STUDY DESIGN: This is a cross-sectional study of women before and after treatment of stage II or higher POP. Women were recruited either at the conclusion of their initial evaluation (before treatment) or at postoperative or pessary maintenance visits (after treatment). Women completed a written survey that used a Likert scale to rank potentially frequently asked questions (FAQs) that could be important information to use in decision making for POP. RESULTS: Among the 100 women surveyed, 32 women wanted to pursue surgical options and 18 women wanted to pursue nonsurgical treatment options in the before treatment group. In the after treatment group, 35 women had undergone surgery and 15 women were using a pessary.Overall, women ranked FAQs about treatment success (overall Likert score, 1.11±0.35), quality of life after treatment (1.18±0.41), and complications and side effects (1.20±0.57) as the most important information when making a decision. Women were least concerned with FAQs regarding cost (2.39±1.48), impact on sexual function (2.21±1.4), and impact on hormones (2.20±1.27). CONCLUSIONS: Women with POP identified the most important FAQs related to treatment success and complications, quality of life, and understanding how the treatment works. This information will be used to develop a comprehensive decision aid for women considering treatment options for POP.


Assuntos
Tomada de Decisões , Prolapso de Órgão Pélvico/cirurgia , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Humanos , Pessoa de Meia-Idade , Educação de Pacientes como Assunto , Autorrelato , Inquéritos e Questionários
10.
Methods Mol Biol ; 1749: 51-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29525990

RESUMO

Endothelial cells have the capacity to shift between states of quiescence and angiogenesis. The early stage of angiogenesis, sprouting, occurs with the synchronized activities of tip cells, which lead the migration of the sprout, and stalk cells, which elongate this vessel sprout. Here, we describe a method to study in vitro this early and rapid stage of sprouting angiogenesis.


Assuntos
Movimento Celular/fisiologia , Células Endoteliais/citologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Biológicos , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Brain ; 140(11): 2939-2954, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053791

RESUMO

Glioblastoma are highly aggressive brain tumours that are associated with an extremely poor prognosis. Within these tumours exists a subpopulation of highly plastic self-renewing cancer cells that retain the ability to expand ex vivo as tumourspheres, induce tumour growth in mice, and have been implicated in radio- and chemo-resistance. Although their identity and fate are regulated by external cues emanating from endothelial cells, the nature of such signals remains unknown. Here, we used a mass spectrometry proteomic approach to characterize the factors released by brain endothelial cells. We report the identification of the vasoactive peptide apelin as a central regulator for endothelial-mediated maintenance of glioblastoma patient-derived cells with stem-like properties. Genetic and pharmacological targeting of apelin cognate receptor abrogates apelin- and endothelial-mediated expansion of glioblastoma patient-derived cells with stem-like properties in vitro and suppresses tumour growth in vivo. Functionally, selective competitive antagonists of apelin receptor were shown to be safe and effective in reducing tumour expansion and lengthening the survival of intracranially xenografted mice. Therefore, the apelin/apelin receptor signalling nexus may operate as a paracrine signal that sustains tumour cell expansion and progression, suggesting that apelin is a druggable factor in glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Apelina , Receptores de Apelina , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais , Glioblastoma/tratamento farmacológico , Células HEK293 , Humanos , Técnicas In Vitro , Espectrometria de Massas , Camundongos , Terapia de Alvo Molecular , Proteômica , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA